
Contents

SALT Language
Overview

ASCII Character Set

SALT Syntax Extended Key Scan
Codes

Script Structure Color Values

Compiler Preprocessor SIMPLE Language

Built-In Functions SALT Editor

System Variables

SALT II Overview

The Telix for Windows SALT II Language

Telix for Windows has a built-in programming language called SALT II (Script Application Language
for Telix version II).    SALT II is based on the powerful SALT script language used in Telix for DOS, and it
will allow you to perform almost any communications related applications within Telix.    SALT II is
designed to be as compatible with SALT as can be accomplished when changing operating systems.   
SALT II looks similar to the C language, however if you have used any programming language (such as
Pascal, BASIC, etc.), you should feel quite at home with SALT II.    While SALT II was designed to be easy
to learn, it is quite complete, so it is recommended that you read the chapters of the Telix for Windows
manual dealing with SALT II.    Hereafter in this help file, SALT II will be referred to as SALT.

What Can be Accomplished With SALT?

A SALT script is basically a sequence of instructions for Telix to follow, using a specific syntax.    You
may use any text editor to produce this script file, as long as its output is normal ASCII text (this means
that if you use your word processor, you must usually explicitly tell it to write out the file using ASCII
format and to not embed any special codes in the file).    You may give any name you wish to a SALT
source file, although we recommend that you always use the extension .SLT for clarity.    Telix for
Windows provides an integrated script editor (hereafter referred to as the SALT Editor) that has many
features designed to aid you in developing scripts.    It is recommended that you use this editor to develop
your scripts.

Creating SALT Programs

Like a program in any programming language, a SALT program (also called a 'script') is typically used
to perform a needed task or function.    The task can range from the very simple to the very complicated.   
For example, a SALT script can be linked to a dialing directory entry, so that when you have established a
connection to that service, it automatically sends your user name and password to the remote service.    A
much more complicated SALT script is used as the basis for the Host Mode included with Telix.

Once you have written your script file and saved it to disk, it must be compiled.    Using the SALT
Editor, you need only to select the Compile command from the menu, or if using an external editor, select
Compile from the Telix for Windows Script menu.    The compiler then reads your 'source' script file, and
compiles it to a form which Telix can understand.    The compiled script can then be loaded more quickly
by Telix, and is also usually smaller.    The output file is written with the same name as the source file
except that the extension .SLC is used.

When the script compiler finds an error in your source file, it will abort the compile process and give
you the line number on which the error occurred, as well as the type of error.    If you are using the SALT
Editor, the cursor will be moved to the line that the error occurred on and the error message will be
displayed on the status bar.    The error should then be fixed and the source re-compiled.    This is
repeated until the compiler detects no more errors in your source file.    The compiled script can then be
executed in Telix using one or all of several methods; using the Execute menu item on the Script menu,
as a linked script in a dialing directory entry, or called from another script.

SALT Syntax

SALT Case & Item Placement

Case is not important in command, function, preprocessor directives or variable names.    The only
time case matters is inside a string constant (e.g., "Hello" is not the same string as "hello").    Whitespace
(such as the space, the tab, the Carriage Return, or the Line Feed character) is not important.    The script
compiler does not care where you place items, so you may arrange the program as you see fit. For
example,

if (value == 1)
 prints("value is 1!");
else
 prints("value is not 1.");
is equivalent to

if (value == 1) prints("value is 1!");
else prints("value is not 1");
or even to

if(value==1)prints("value is equal to 1!");else prints("value is not equal to
1.");

The only time whitespace matters is when it would split up keywords or function names, or in a string. 
For example, the keyword while must not be split up if it is to be recognized. The same applies to other
keywords or function names.    Also, there must be space between the letters of a command and other
letters.    For example, "while abc" is not the same as "whileabc".    In the interest of clarity, it is
recommended that you try to make your code easy to understand, by indenting where appropriate, and by
using space effectively.    There is no reason, for example, to put more than one statement on a line, even
if it is perfectly legal.    A good example of program style can be found by looking at the sample scripts
included with Telix for Windows.

String Constants

A string constant is a sequence of ASCII characters enclosed in quotes, for example, "Hello",
"Goodbye", or "Telix".    It is often necessary for a string constant to include special characters that can not
easily be typed from the keyboard, or can not be easily displayed.    This is done with something called the
escape character, which is the caret (^) symbol.    When the SALT compiler is reading a string constant
and comes to the ^ symbol, it replaces it with a certain ASCII code based on the character following the ^.
Translations are as follows:

^c Where c is any letter, the Control representation of c is inserted into the text.    Therefore ^M
represents Ctrl-M, ^j represents Ctrl-J, etc. Whether the letter c is upper or lower case is not
significant.    Note that what is really happening here is that 64 is being subtracted from the ASCII
value of c, so for example, the Escape character can be represented as ^[.

^^ An actual caret (^) symbol is placed into the text.

^" An actual double quote symbol (") is placed into the text.    Strings are always delimited by the
double quote symbol, so one cannot be readily embedded in a string.    Using the ^" control

representation will allow the inclusion of double quote characters in strings.    If the plain " symbol
were to be used, the compiler would think that the string was terminated at that point. For
example, the string "He said, ^"Hello^"." is translated to 'He said, "Hello".'.

^' An actual single quote symbol (') is placed into the text.

^nnn Where nnn is up to 3 digits representing the ASCII value of the character which should be
placed into the text.    A maximum of three digits is read, or up to the first non-digit character.    For
example, the compiler would read in the string "S^65LT" and interpret it as the string "SALT",
since 65 is the ASCII value of 'A'.    Note that if nnn is less than 3 digits you may have to pad it
with one or two leading zeros if there are digits immediately following it in the string, so that the
wrong value is not read in.    For example the string "^79 Park Avenue" would translate to "O Park
Avenue" since 79 is the ASCII value of 'O'. If you actually wanted Ctrl-G (ASCII code 7) followed
by "9 Park Avenue", you would use the string "^0079 Park Avenue".

~ When this character is sent to a modem device, it will cause it to pause for 1/2 a second.    This
character is cumulative, so sending multiple will increase the delay length.

Integer Constants

An integer constant is a sequence of digits representing an integer value in the range of -
2,147,483,648 to 2,147,483,647. An integer constant must start with a digit from 0 to 9 or the negative
sign (-) followed by a digit. The following are all valid integer constants:

10
-400067
999

An integer constant may also be entered in hexadecimal form (base 16, where each digit may be from
'0' to '9' or 'a' to 'f', to represent 16 values). Hex values must be preceded by 0x for the compiler to
interpret them as such, and case is not important. The following are all valid integer constants enter in
hexadecimal form:

0xff00
0Xa2
0x7D
0x1AbCdEf

Comments

A comment in a source file is text that does not affect what the program does, and is meant purely for
explaining or describing something.    In a SALT source file, whenever the symbol // is encountered on a
line, all the characters from that point on until the end of the line are considered to be a comment and are
ignored.    For example:

prints("Hello"); // This line will print "Hello"
New to SALT II to is another method of commenting, the symbols /* and */.    The first symbol indicates

the start of a comment and the second indicates the end of it.    Using this method of commenting will
allow the comment to continue across lines, unlike the // method.    This is used for large comment
sections and often for temporarily removing code from a script.    For example:

/* This comment is three lines long,

 but we need only two markers to
 indicate its beginning and end. */
 prints("Start of script.");
/* prints("These lines would");
 prints("neither be compiled,");
 prints("nor executed."); */
 prints("End of script.");

SALT Structure
A SALT script has the following format:

<global_variable_definition>
...

<global_variable_definition>

<function_definition>

<global_variable_definition>
...

<global_variable_definition>

<function_definitions>
...

and so on.    Basically, a script file consists of definitions of global variables (variables which are available
to any part of the script file after which they are defined, and function definitions (functions are lines of
code clustered together in a group, so that they can be called by a name).    A script file does not have to
have any global variables or functions, but to run it must at least have one function called 'main'.    The
following, for example, is a complete script file:

main()
 {
 prints ("hello");
 }

When compiled and executed, this script would print the string "hello" to the screen.

See also

Variables, Expressions and Operators, Functions, Statements

Variables
A variable is a location in memory where something is stored.    The contents of a variable can be

changed by program code (hence the name).    In SALT, there are two types of variables, integer
variables, and string variables.    The former holds an integer value (e.g., 485624, or -627), while the latter
holds a text string (e.g. "Telix", or "SCRIPT").    Depending on where it is defined, a variable is either
global or local.    If a variable is global, it means that it can be used by any part of the script after the point
where it is defined.    If a variable is local, it means that it can only be used by the part of the script to
which it is local, for example, the function inside which it is defined.    A variable name can be up to 31
digits long, and may include the letters 'A' to 'Z' or 'a' to 'z', the digits '0' to '9', or the underscore character
(_).    The name may not start with a digit.    For example, 'his_name2' and '_his_name2' are legal as
variable names, while '2his_name' is not.

An integer variable is defined in the form

int <varname>;
where <varname> is the name to be given to the variable.    An alternate definition is

int <varname1>, <varname2>, ..., <varnameN>;
which allows you to define more than one integer variable in one statement.    An original value can be
assigned to the integer variable by using the form

int <varname> = <int_const>;
where <int_const> is an integer constant.    Similarly, an original value can be assigned in the multiple
definition above by placing the assignment before the comma.    Some examples are:

int maximum;
int start = 0;
int level, i, count = 20, loop;

A string variable is defined in the form

str <varname>[<max>];
where <varname> is the name to be given to the variable.    <max> is the maximum number of characters
that the string can hold, and must be in the range of 0 to 32767.    An alternate definition is

str <varname>[<max>], <varname2>[<max>], ..., <varnameN>[<max>];
which allows you to define more than one string variable in a statement. An original value can be
assigned to the string variable by using the form

str <varname>[<max>] = <str_const>;
where <str_const> is a string constant.    Similarly, an original value can be assigned in the multiple
definition above by placing the assignment before the comma.    Some examples are:

str password[80];
str password[40] = "mypass", name[30];
The string length field may be left empty if an original value is specified, in which case the length of the

string variable is assumed to be that of the assigned text.    For example:

str name[] = "John";
name = "Matthew";
would declare a variable called name with a maximum length of four (five counting the 0 (NULL)
terminator) and an initial value of "John".    On the second line, it is assigned a new value,    but because
the maximum length is only four, the variable now contains the string "Matt", not "Matthew" as it might
appear to the unsuspecting.

If a variable is outside of a function, it is global.    If it is defined inside a function, it is local to that function
and will only be recognized there.    If a variable defined inside a function uses the same name as a global
variable, any reference to that name while in the function will access the local variable.    After the function
has completed, the local variable is removed and a reference to that name will access the global variable.

Expression and Operators
An expression is a mixture of symbols which resolves to a value when evaluated.    In other words, an

expression is basically a formula.    An expression can consist of constants, variables, function calls, and
operators.    An expression can be very simple, or very complicated.    For example, some expressions
are:

10 + 3 - 5
9 * 7 / 63 - 30
result = 10 * max(a, b)
month >= 10
200
command == "bye"
prints("Hello")

In an expression, the data being acted upon are constants, variables, and functions calls, while the
operators (+, *, etc.) are the symbols that do things with the data.    There are many different operators, of
which there are two basic types.    Binary operators (such as +, *, /) perform a calculation on the
expression on either side of them.    Unary operators appear before a single expression and work on that. 
The following table lists the operators available in SALT:

Symbol (Un/Bin)ary What it is/does
- unary Arithmetic negation
! unary Logical NOT
not unary Logical NOT (alternate)
++ unary Increment
-- unary Decrement
* binary Multiplication
/ binary Division
% binary Remainder (Mod)
+ binary Addition
- binary Subtraction
< binary Less than
> binary Grater than
<= binary Less than or equal to
>= binary Greater than or equal to
== binary Equality
!= binary Inequality
& binary Bitwise AND
| binary Bitwise OR
^ binary Bitwise Exclusive OR
&& binary Logical AND
and binary Logical AND (alternate)
|| binary Logical OR
or binary Logical OR (alternate)
= binary Assignment
+= binary Addition and Assignment
-= binary Subtraction and Assignment
*= binary Multiplication and Assignment
/= binary Division and Assignment

Note that the hyphen symbol (-) can be either an arithmetic negation or a subtraction depending on
its use.    Note that '!' is equivalent to 'not', '&&' is equivalent to 'and', and '||' is equivalent to 'or'.    The first
form is preferred as you do not have to leave whitespace around it for the compiler to recognize it, but
beginners may have an easier time remembering the second form.    Also, do not confuse '=' (the

assignment operator) with '==' (the equality operator).    The former is used to assign a value to a variable,
while the latter is used to compare two values.    Assuming you have the two expressions, <expr1> and
<expr2>, <expr1> = <expr2> would assign one to the other, while <expr1> == <expr2> would test the two
to see if they are equal.    For example

num = 10;
would assign the value 10 to the variable called 'num', while

num == 10
would resolve to a value of non-zero (TRUE) if num was equal to 10, and 0 (FALSE) if num was not equal
to 10. There is also a difference between the Logical operators and the Bitwise operators.    The Logical
operators (such as and, &&, or, ||, etc), work with TRUE or FALSE values and result in a TRUE or FALSE
value, while the Bitwise operators (&, |, ^) work with the actual bits of the data they are handling.    The
Bitwise operators almost never have to be used in a Telix script, unless it is needed to get at the actual
bits in a data byte.

Every operator resolves to a value, which is the result of the operation performed (e.g, 10 * 7 would
resolve to 70).    The conditional or equality operators such as ==, >, <=, etc., resolve to    a 0 (FALSE)) or
non-zero (TRUE) value based on the results of the expression.    Even the assignment operator =
resolves to a value.    The result of the expression

num = 10;
would be 10.

All the operators have something called precedence, which is their importance, and determines the
order in which they are evaluated.    For example, 7 + 3 * 9 is equal to 34, because 3 * 9 is evaluated first,
and then added to 7 (* has a higher precedence than +).    All the operators are listed below in order of
decreasing precedence.    All the operators on the same line have the same precedence, and are resolved
in the order that they are encountered.

- !
++ --
* / %
+ -
< > <= >=
== !=
&
|
and &&
or ||
=

If a certain evaluation order is required that does not follow these rules of precedence, parentheses
may be used. Thus, 99 + 1 * 10 equals 109, while (99 + 1) * 10 equals 1000.

If you are writing an expression of any sort, and are not sure of the exact precedence of the operators
you are using, use parentheses!

The operators +=, -=, *=, /= are new to SALT in Telix for Windows.    They are a shorthand method of
performing basic math functions on a single variable.    To illustrate their use, the following examples show
the longhand and shorthand equivalents:

int i;

i = 5;
i = i + 3; // longhand. i == 8 now.
i += 3; // shorthand. i == 11 now, NOT 3.
i = i - 5; // longhand. i == 6.
i -= 2; // shorthand. i == 4.
i = i * 3; // longhand. i == 12.
i *= 2; // shorthand. i == 24.
i = i / 6; // longhand. i == 4.
i /= 4; // shorthand. i == 1;

Functions
A function is a way of grouping together some lines of code.    A Telix script consists of one or more

functions.    There are quite a few advantages to using functions:

One function can be called from another, to do a certain task. The calling function does not have
to know anything about the called function other than what it does. This allows a script to be split
up into modular units, and makes code writing and debugging easier.

As mentioned above, what a function does it private. This means that data variables defined in a
function are local to that function, and therefore you do not have to worry about another part of
the script unintentionally modifying them.

A library of functions can thus be built. Later, you do not have to rewrite old code.

Functions are defined in the following format:

<funcname>(<arg1>, <arg2>, ..., <argN>)
 {
    <variable_def>
...
    <variable_def>

    <statement>
...
    <statement>
 }

<funcname> is the name of the function.    It follows the same rules of other identifiers in SALT.   
There can only be one function that uses a given name, however.

<arg1> through <argN> are the declarations of the arguments (parameters) that have been passed to
the function by its caller (sometimes, to accomplish its task, a function needs to have some values passed
to it).    Each argument is defined in the form <type> <name> where <type> is int or str, and <name> is the
name it should be called by.    At present, a function is not allowed to have more than 12 values passed to
it.

<variable_def> is a variable definition, as described in the above section on that topic.    Any number
of variables may be declared at this part of the function.    All such variables will be local variables and
available only to this function.

<statement> is an actual line of code.    There may be as many lines of statements in the function as
needed.    The format of a statement is described below. First though, here is an example of a complete
function:

max (int a, int b)
 {
 int result;
 if (a > b)
 result = a;

 else
 result = b;
 return result;
 }
This function returns the larger (maximum) of the two values passed to it.    It could have been written

much more simply (without the use of the variable), but was written this way so that all the function
elements would be there.

Statements
A statement is the basic element of code.    A statement ALWAYS ends with a semicolon

character (;).    In any location where a statement is acceptable, you may use a group of statements, by
enclosing them all in curly braces ({ and }).    There are many types of statements, including:   
expression, if, while, do...while, for, return, break, continue, goto and switch statements.    Each type has
several different parts.

See also

Expression Statements, If Statements, While Statements, Do...While Statements, For Statements,
Return Statements, Break Statements, Continue Statements, Goto Statements, Switch Statements

Dead Parrot
Special Thanks go to Crawford Dales for the outstanding job of proofreading.

Expression Statement
The expression statement is the simplest and most common type of statement.    Its format is

<expression>;

where <expression> is any expression.    Examples are:

result = 20;
password = "Beef";
pause(20);
num = 20 * max(a, b);
Do not forget the semicolon character at the end of the statement.    If you do, the compiler will think

that the next statement is part of the current one, and will report some unexpected error.

If Statement
An if statement is used when a statement or group of statements should be evaluated only if a

condition is true.    The format for an if statement is as follows:

if (<expression>)
 <statement>

<statement> is any statement as described above and below (that is, an expression, if, while, do...while,
for, return, break, switch or continue statement), and will only be executed if <expression> evaluates to
non-zero.    By using curly braces around them, a whole group of statements may be conditionally
evaluated.    Some examples are:

if (result == -1)
 prints("ERROR!");
if (num_tries > maximum)
 return 0;
if (month > 10 && day < 20)
 {
 clear();
 prints("In range.");
 return 1;
 }
if ((num < 10) && (!error) && (read != 0))
 prints("Continuing...");

An alternate form of the if statement is:

if (<expression>)
 <statement1>
else
 <statement2>
In this case, if <expression> evaluates to non-zero (TRUE), <statement1> is executed, otherwise

<statement2> is executed.    Again, multiple statements may be used instead by grouping them in curly
braces.    Some examples are:

if (stat == -1)
 prints("Error status returned.");
else
 prints("Function finished without problems.");
if (level < 10)
 {
 alarm(1);
 prints("Warning!");
 }
else
 prints("Everything's ok.");

Since the statement to be executed conditionally can be of any type, that means that any number of if
statement can be nested if needed.    For example:

if (num < 10)
 if (!error)
 if (read != 0)
 return 1;

This also means that something like the following is legal:

if (value == 10)
 do_this();
else if (value == 100)
 do_that();
else if (value == 1000)
 do_something_else();
else
 do_whatever();

What is really happening here is that each if statement is being nested after the else portion of the
previous one.    The above example could also be written as:

if (value == 10)
 do_this();
else
 if (value == 100)
 do_that();
 else
 if (value == 1000)
 do_something_else();
 else
 do_whatever();

Any amount of nesting is theoretically legal, but the compiler does have a limit due to memory constraints.

While you may write the code in any way which suits you, it is recommended that you use indenting,
for clarity.    Indenting your code at the proper places makes it a lot easier to read.    A very common error
to watch out for is accidentally placing a semicolon after the parenthesis ending the expression.    For
example, if the following is run:

if (num == 10);
 prints("Num is equal to 10);

the string would always be printed, no matter what num was equal to.    This is because the semicolon
after the parenthesis ending the expression signifies the end of the statement.    In the above case, it
would just be a null (empty) statement.

WHILE Statement
The while statement is used to loop continuously while a certain condition is true.    It has the form

while (<expression>)
 <statement>

<statement> would continue to be repeated over and over while <expression> evaluated to non-zero
(TRUE).    Note that if the expression evaluates to 0 (FALSE) from the beginning, the statement will never
be executed.    Again, multiple statements may be used by surrounding them in curly braces.    A few
examples are:

while (stat != -1)
 stat = myfunc();
while (num < 100)
 {
 printn(num);
 prints("");
 num = num + 1;
 }
while (1)
 {
 if (func1())
 return 0;
 func2();
 }

Again, be careful to not place a semicolon after the parenthesis ending the expression.

DO ... WHILE Statement
The do...while statement is similar to the while statement and has the form:

do
 <statement>
while (<expression>);

<statement> will be executed at least once and will continue to be executed repeatedly until the
expression becomes 0 (FALSE).    A few examples are:

do
 stat = func1();
while (stat != -1);
do
 {
 prints("hello");
 num = num + 1;
 }
while (num < 100);

FOR Statement
The for statement is used to loop continuously while a certain condition is true.    The advantages over

the while statement is that a control variable can be initialized and incremented quite easily.    The for
statement has the form:

for (<expression1>; <expression2>; <expression3>)
 <statement>
The first expression is the one that should initialize the count variable.    For example, if you wanted to

count from 1 to 100, and were keeping the count in a variable called num, the first expression would be
num = 1.    The second expression is the conditional test.    As long as it evaluates to non-zero (TRUE), the
statement will be executed.    Following the above example, this expression would be num < 100.    The
third expression is the one that is used to increment the count variable.    For the above example, it would
therefore be num = num + 1.    This for statement differs in format from that in most other languages, but
doing it this way is actually gives the programmer a lot of power and flexibility.    Note that any of the
expressions can be left empty, in which case they evaluate to non-zero (TRUE).    Some examples are:

for (count = 0; count < 100; count = count + 1)
 {
 printn(count);
 prints("");
 }
for (c = 1000; c > 0; c = c - 1)
 do_this(c);

The following would execute an infinite loop:

for (;;)
 prints("Hello!");
In some programming languages, the for statement is used to execute a loop for a specific number of

iterations.    In SALT however, you have more control over the condition that causes the loop to terminate. 
The conditional test is almost always related to the control variable, however any expression that will
evaluate to a true or false value may be used.    For example, the following is quite legal:

for (c = num = 0; ((c < 100) && (stat != -1)); c = c + 1)
 {
 stat = func(num);
 num = func2();
 }

The statements would only be executed if c was smaller than 100 and stat, which is not related to the
control variable, didn't equal -1.

RETURN Statement
At some time, every function must be exited.    If the end of the function is reached, control will

automatically return to the calling function.    Very often however, it is necessary to leave a function
somewhere while only halfway through it, perhaps based on a conditional test.    Also, it is often necessary
that a function returns a value to the caller.    The format of the return statement is:

return <expression>;
If the return statement is encountered anywhere in the function, control immediately returns to the

function that called this function.    The expression is the value that should be returned. If no expression is
supplied, a dummy value is returned.    The expression should match they type of value that the caller of
this function is expecting.    That is, if an int type is expected, the expression should resolve to an integer
value.    If a str type is expected, the expression should resolve to a string value.    Due to memory
constraints, a local string variable may NOT be returned from a function.    Some examples are:

return;
return 1;
return level;
return (sum + 25);
return "hello";
return (func() + 20);

Notice that when a complex expression is returned it is usually surrounded by parentheses.    This is done
only for clarity and is not necessary.    Also, it should be clear that what is returned is not the expression
but what it evaluates to.

BREAK Statement
Often while using a looping statement (while, do...while, for), it is necessary to break out of (exit) the

loop.    The break statement serves this purpose.    When the break statement is encountered, execution
of the innermost while, do...while, for, or switch statement is terminated, and execution continues
immediately after the terminated statement.    It is an error for a break statement to appear outside of a
loop.    The format of the break statement is:

break;
For example, assuming you had the following code:

int num = 0;
while (1)
 {
 num = num + 1;
 if (num > 100)
 break;
 }
prints("Done");

Ordinarily, since there will always be a non-zero (TRUE) value in the conditional part of this while
statement, it would execute forever.    However, when the 'num' variable is greater than 100, the break
statement is executed to exit from the loop, at which point the next statement would be executed (the
function call to prints).

CONTINUE Statement
The continue statement is used within a loop (while, do...while, or for statement).    The continue

statement has the form:

continue;
It is illegal for a continue statement to appear outside of a loop body.    When a continue statement is

encountered, program control is immediately transferred to the end of the body of the innermost enclosing
while, do...while, or for statement.    The effect in a while or do...while statement is that the condition part
of the loop is evaluated, and the next iteration occurs.    For example:

num = 0;
while (num < 100000)
 {
 num = num + 1;
 if (num > 100)
 continue;
 prints("Hello");
 }

The effect of the continue statement in the above loop would be that 'Hello' would only be printed while
num was less than or equal to 100, as the continue statement is executed when num is greater than 100,
which causes the rest of the loop body to be skipped.    An example of the use of continue in a for
statement would be:

for (num = 0; num < 100000; num = num + 1)
 {
 if (num > 100)
 continue;
 prints("Hello");
 }

The effect in this case would be the same.    While num is less than or equal to 100, the entire loop body
executes.    If num is greater than 100 however, the continue statement is executed.    This causes the rest
of the loop body to be skipped, so the 'Hello' is then not printed.

GOTO Statement
The goto statement is used to branch (jump) from one place to another, within a function.    The use of

the goto statements is generally considered bad style.    They can make code very hard to understand,
and are in fact almost never necessary.    For example, Telix for Windows is written mainly in the Pascal
language, which has a goto statement, yet except for a few pieces of speed-critical, prewritten code, the
goto statement was never used or needed.    On the other hand, used very sparingly and properly, it can
sometimes make some code clearer and perhaps faster.    The goto statement consists of two parts, the
'label' or marker, which is where execution will jump to, and the actual goto itself.    A label is defined in the
form

<identifier>:
where <identifier> follows the same rules as for variable names.    Note that a colon follows the name, not
a semicolon. The colon character must immediately follow the label name, with no intervening spaces. A
label does not have to be on a line by itself, and is not considered a statement by itself. The goto takes
the form

goto <label>;
where <label> is a label elsewhere in the function defined as described above. Execution of the script will
immediately continue following the label.

An example is:

start:
 prints("Hello");
 goto start;

This would print the word "hello" over and over, forever. There is no restriction on the placement of a
label, so the above can be written as:

start: prints("Hello");
goto start;
As mentioned above, there are usually better ways than using a goto statement. For example:

int i = 0;
do
 i = i + 1;
while (i < 100);

is clearer than the equivalent:

int i = 0;
loop:
 i = i + 1;
 if (i < 100)
 goto loop;
One good use of a goto statement is to get out of a deeply nested while statements, without having to

do a lot of extra checking.

SWITCH Statement
The switch statement is new to SALT in Telix for Windows, and follows the form of the switch

statement in the C language exactly. A switch statement is used when you must test for a number of
possible conditions.    The switch statement has the form:

switch (<value>)
 {
 case n1: <statement>
 break;
 case n2: <statement>
 break;
 ...
 default: <statement>
 }

where <value> is an integer variable and n1, n2, etc. are integer constants.    The switch statement
compares the integer constants you list in each of the case labels against the actual value in <value>.   
When a match is found, control is passed to the <statement> following the case label that was equal to
<value>.    Execution then continues until the break statement is encountered, indicating the end of
processing, and exit from the switch statement.    This is most commonly used as a replacement for
multiple if..else statements.    An example is:

int i;
i = 5;
switch (i)
 {
 case 1: prints("i equals 1");
 break;
 case 2: prints("i equals 2");
 break;
 case 3: prints("i equals 3");
 break;
 case 4: prints("i equals 4");
 break;
 case 5: prints("i equals 5");
 break;
 default: prints("i cannot be determined");
 }

This example could be written using multiple if statements as:

int i;
i = 5;
if (i == 1)
 prints("i equals 1");
else

 if (i == 2)
 prints("i equals 2");
 else
 if (i == 3)
 prints("i equals 3");
 else

 if (i == 4)
 prints("i equals 4");
 else
 if (i == 5)
 prints("i equals 5");
 else
 prints("i cannot be determined");

But, as you can see, it becomes much more difficult to read, as well as being slightly slower in execution
time.

Preprocessor
Telix for Windows now includes what is commonly referred to as a Preprocessor.    The preprocessor

allows control over the compiler in matters such as what will be compiled under what conditions, inclusion
of other script files, and other related items.    The preprocessor will prove to be invaluable, especially if
you develop large scripts, or scripts that target both the Windows and DOS versions of Telix.

See also

Preprocessor Commands, Predefined Conditional Symbols

Preprocessor Commands
The Telix for Windows script preprocessor uses the following identifiers:

#DEFINE
#UNDEF
#IFDEF
#IFNDEF
#ELSE
#ENDIF
#INCLUDE
#INCLUDEDIR
#COMPILETO
#STACK
#CONST
#DEBUGON
#DEBUGOFF

#DEFINE Directive
Example

#DEFINE id

Description

This directive defines a conditional symbol with the name given in id.    The symbol is recognized for
the remainder of the compilation, even in subsequently included files, until an #UNDEF directive with the
same id appears.    The #DEFINE directive has no effect if id is already defined.

See also

#UNDEF, #IFDEF, #IFNDEF

#DEFINE Example

#DEFINE TESTING
main()
 {
 prints("This is always displayed.");
 #IFDEF TESTING
 prints("This is displayed if TESTING is defined");
 #ELSE
 prints("This is displayed if TESTING is not defined");
 #ENDIF
 }

#UNDEF Directive
Example

#UNDEF id

Description

This directive undefines a previously defined conditional symbol with the name given in id.    The
symbol is forgotten for the remainder of the compilation or until it reappears in a #DEFINE directive.    The
#UNDEF directive has no effect if id is already undefined.

See also

#DEFINE, #IFDEF, #IFNDEF

#UNDEF Example

#DEFINE TESTING
main()
 {
 prints("This is always displayed.");
 #IFDEF TESTING
 prints("This is displayed if TESTING is defined");
 #ELSE
 prints("This is displayed if TESTING is not defined");
 #ENDIF
 #UNDEF TESTING
 #IFDEF TESTING
 prints("This is never displayed.");
 #ENDIF
 }

#IFDEF Directive
Example

#IFDEF id

Description

This directive compiles the source code that follows it if the name given in id is defined.    The
compilation continues until an #ELSE or #ENDIF directive is reached.    If id is not defined, the source
code following the #IFDEF directive is ignored until an #ELSE or #ENDIF directive is reached.

See also

#DEFINE, #UNDEF, #IFNDEF, #ELSE, #ENDIF

#IFDEF Example

#DEFINE TESTING
main()
 {
 prints("This is always displayed.");
 #IFDEF TESTING
 prints("This is displayed if TESTING is defined");
 #ELSE
 prints("This is displayed if TESTING is not defined");
 #ENDIF
 #UNDEF TESTING
 #IFDEF TESTING
 prints("This is never displayed.");
 #ENDIF
 }

#IFNDEF Directive
Example

#IFNDEF id

Description

This directive compiles the source code that follows it only if the name given in id is not defined.    The
compilation continues until an #ELSE or #ENDIF directive is reached.    If id is defined, source code
following the #IFNDEF directive is ignored until an #ELSE or #ENDIF is found.

See also

#DEFINE, #UNDEF, #IFDEF, #ELSE, #ENDIF

#IFNDEF Example

#DEFINE TESTING
main()
 {
 prints("This is always displayed.");
 #IFNDEF TESTING
 prints("This is NOT displayed if TESTING is defined");
 #ELSE
 prints("This is displayed if TESTING is defined");
 #ENDIF
 #UNDEF TESTING
 #IFNDEF TESTING
 prints("This is always displayed.");
 #ENDIF
 }

#ELSE Directive
Example

#ELSE

Description

This directive switches between compiling and ignoring the source code delimited by the last #IFDEF
or #IFNDEF and the next #ENDIF.

See also

#DEFINE, #UNDEF, #IFDEF, #IFNDEF, #ENDIF

#ELSE Example

#DEFINE TESTING
main()
 {
 prints("This is always displayed.");
 #IFDEF TESTING
 prints("This is displayed if TESTING is defined");
 #ELSE
 prints("This is displayed if TESTING is not defined");
 #ENDIF
 }

#ENDIF Directive
Example

#ENDIF

Description

This directive ends the conditional compilation initiated by the last #IFDEF or #IFNDEF directive.

See also

#DEFINE, #UNDEF, #IFDEF, #IFNDEF, #ELSE

#ENDIF Example

#DEFINE TESTING
main()
 {
 prints("This is always displayed.");
 #IFDEF TESTING
 prints("This is displayed if TESTING is defined");
 #ELSE
 prints("This is displayed if TESTING is not defined");
 #ENDIF
 prints("This is always displayed.");
 }

#INCLUDE Directive
#INCLUDE "<filename>"

Description

This directive instructs the compiler to include the file <filename> in the compilation.    In effect, the
file is inserted in the compiled text at the point where the #INCLUDE directive appears.    If <filename>
does not specify a directory for the file, it will be searched for in the following order:

Directories specified in the #INCLUDEDIR directive.

Path of the script being compiled.

Telix for Windows default script directory.

Current directory.

See also

#INCLUDEDIR, #COMPILETO

#INCLUDEDIR Directive
#INCLUDEDIR "<path>"

Description

This directive instructs the compiler to include the directories specified in <path> when searching for
files named in an #INCLUDE directive, call or calld function.    The compiler will search for specified files if
a script is used that does not have a path specified.    The search is performed in the following order:   

Directories specified in the #INCLUDEDIR directive.

Path of the script being compiled.

Telix for Windows default script directory.

Current directory.

Multiple directories may be specified in <path>, and are separated by the semicolon (;) character.

See also

#INCLUDE, #COMPILETO

#COMPILETO Directive
#COMPILETO "<filename>"

Description

This directive tells the compiler to name the resulting compiled script as the filename specified in
<filename>, rather than based on the source filename.    By default, the compiler uses the source
filename, and changes the extension to .SLC.    Using this directive, the compiled script may be given a
completely different filename, including extension.    Also, compiled script files may also be placed in
another directory, as <filename> may contain drive and/or directory specifications.

See also

#INCLUDE, #INCLUDEDIR

#STACK Directive
#STACK bytes

Description

This directive instructs the compiler to reserve the number of bytes specified in bytes for the script's
stack space.    The default stack size for Telix for Windows' scripts is 1024 bytes.    The minimum stack
size is 64 bytes and the maximum is 32768.

The stack is an area of memory used to store various pieces of information during the execution of a
script.    Such information includes variables local to functions, parameters passed to functions, and other
items that are transparent to the script programmer.    The default stack size is sufficient for most scripts,
but if you are writing exceptionally large scripts, you may find you need to increase this size.

#CONST Directive
#CONST id value

Description

This directive defines a symbol specified in id and assigns the value specified in value to it.    This
symbol can then be referred to as if it were a normal variable, with the exception that it's value cannot be
changed.    The value parameter must be an integer, as string constants are not supported at this time.

#DEBUGON Directive
#DEBUGON

Description

This directive instructs the compiler to include information in the compiled script that can aid you in
finding errors in it.    The resulting script will be larger than one compiled without debugging information,
but during development of a script the information can be invaluable.    A script compiled with debugging
information will report any errors that occur in the same manner as one without debugging information,
but in addition it will report the filename of the script and the line number the error occurred on.    In the
interests of size and efficiency, debugging information cannot exceed 64k, which translates to roughly
13,000 lines of code.    If your script exceeds 13,000 lines, you can selectively turn the debugging
information on and off by using the #DEBUGOFF preprocessor directive.

See also

#DEBUGOFF

#DEBUGOFF Directive
#DEBUGOFF

Description

This directive instructs the compiler not to include debugging information in the compiled script.    By
default, scripts do not include debugging information, but if you use the #DEBUGON preprocessor
directive, you may need to use this directive in certain situations.    In the interests of size and efficiency,
debugging information cannot exceed 64k, which translates to roughly 13,000 lines of code.    If your script
exceeds 13,000 lines, you can selectively turn the debugging information off with #DEBUGOFF.    This will
allow you to include debugging information in the sections of your script where errors may occur, and
exclude it in sections that do not need it.

This directive is not required if you have specified the #DEBUGON directive.    The compiler will
include debugging information from the point it encounters the #DEBUGON directive until it reaches the
maximum amount it can include in the script file.    Most scripts will never need this directive, as few will
approach the 13,000 line limit.

See also

#DEBUGON

Predefined Conditional Symbols
SALT II defines the following standard conditional symbols:

SALTII Always defined in Telix for Windows v1.00.    If this symbol is defined, the version of the
SALT script compiler is compatible with SALT II, first introduced with this version of
Telix.

WINDOWS Defined for Windows versions of Telix, indicating that the version of Telix being used to
compile the script is a native MS-Windows application.

Built-In Functions
Telix for Windows' SALT II language has quite a large number of built-in functions.    These functions are
called just as you would call your own SALT functions.    Each performs a certain task (print something to
the screen, manipulate strings, access disk files, etc.) and is called with parameters in a certain format
and returns an integer or string value (the return value does not have to be used and can often be
ignored).

Select the Quick List to view a listing of the functions grouped by the type of action they perform.   
Following the Quick List is a complete reference of each function in alphabetical order (accessed by the
Next (>>) and Previous (<<) buttons above), including a summary of the calling format, a description of
what it does, and the return value of the function.    An example of actual usage of the function is also
often given to illustrate usage.    Note that the examples are fragments of program code for the most part,
and may not explicitly declare all needed variables.    So that you may find related functions, each function
description has a 'See Also' section, which lists related functions.    Simply click on any item in the 'See
Also' section to move to that part of the help.    For users of Telix for DOS, a New & Changed section is
included that lists the SALT functions that are new or have had their behavior modified in some way.

Function Quick List
Character Handling:
IsAscii Checks to see if a character has a value of 0-255
IsAlNum Checks to see if a character is a letter A-Z or a digit
IsAlpha Checks to see if a character is a letter of the alphabet
IsCntrl Checks to see if a character is a control character
IsDigit Checks to see if a character is a numeric digit 0-9
IsLower Checks to see if a character is a lower case letter
IsUpper Checks to see if a character is an upper case letter
ToLower Converts a character to lower case if it is not already
ToUpper Converts a character to upper case if it is not already

Comm Port Operations:
Carrier Determines whether a carrier is present on the port
cInp_Cnt Counts the received chars that have not been handled
cGetC Returns the next character from the receive buffer
cGetCT Waits a set time for the next character to be received
cPutC Sends a single character to the connect device buffer
cPutN Sends an integer value to the port as an ASCII string
cPutS Sends a string of chars to the connect device buffer
cPutS_TR Sends a string through the emulation to the port
FlushBuf Throws away any chars waiting in the receive buffer
Get_Baud Returns the connect devices DCE or DTE rate
Get_DataB Returns the connect devices current data bits setting
Get_Parity Returns the connect devices current parity setting
Get_Port Returns the connect devices current port number 1-8
Get_StopB Returns the connect devices current stop bit settings
Hangup Terminates the current connection if any, like ALT-H
Send_Brk Sends a break signal to the modem, like CTRL-END
Set_ConnectDevice Changes the current connect device to a new device
Set_CParams Sets new speed, data bits, parity, and stop bits
Set_Port Function no longer used, use Set_ConnectDevice

File Input/Output Operations:
fClearErr Clears the error flag associated with an open file
fClose Closes a file previously opened with fOpen
fDelete Deletes a specified file; the file may not be open
fError Checks for file errors (i.e. writing to a read only file)
fEOF Checks a file pointer for the end of an open file
fFlush Clears a file buffer (writes all cached writes)
fGetC Retrieves the next character from an open file
fGetS Retrieves string of specified length from an open file
FileAttr Checks a specified file for being hidden, a subdir, etc.
FileFind Determines if a file matching a mask is on disk
FileSize Returns the size of a given file in bytes
fnStrip Extracts parts of a filename from a complete path
fOpen Opens a specified file for reading or writing
fPutC Writes a single character to a file opened for writing
fPutS Writes a given string to a file opened for writing
fRead Reads a block of characters from an open file
fRename Renames a file to a specified new file name

fSeek Moves the file pointer of open files to a new location
fTell Retrieves the file pointer position of an open file
fWrite Writes a block of characters to a write-opened file

File Transfers and Logs:
Capture Opens, closes, pauses, or unpauses specified log file
Capture_Stat Retrieves the state of the capture log (open, paused)
Printer Toggles the Printer Log on and off
Receive Download specified files with a specified protocol
Send Upload specified files with a specified protocol
Set_DefProt Change the connect devices default protocol
UsageLog Opens and closes the default Usage Log
Usage_Stat Determines whether the Usage Log is open or closed
UStamp Enter text, and optionally the date and time, into the usage log file

Input String Matching:
Track Tells Telix to watch for a string to be matched
Track_AddChr Adds a character to the tracked-string buffer
Track_Free Tells Telix to stop watching for a matched string
Track_Hit Asks Telix whether a tracked string has been found
WaitFor Wait for a string for a specified period of time

Keyboard Operations:
InKey Retrieves a key, if available from the keyboard buffer
InKeyW Retrieves a key, waiting if needed, from the keyboard
KeyGet Returns the contents of a given keyboard macro
KeyLoad Loads a specified keyboard macro table
KeySave Saves the current keyboard macro table
KeySet Set a specific key to contain a new macro

Miscellaneous Functions:
Dos Opens a DOS window and executes a DOS command
Dial Dials a PhoneBook number or group of numbers
DosFunction No longer used    included for Telix for DOS users
ExitTelix Exits Telix immediately; may or may not hang up
GetEnv Returns a variable value in the master environment
HelpScreen Displays the Telix for Windows Help file
LoadFon Loads a different PhoneBook into Telix for Windows
NewDir Changes the current directory to the one specified
Random Generates a random number in a specified range
Redial Redials the currently selected PhoneBook entries
Run Runs a DOS or Windows application
Set_Terminal Sets the Terminal Device to a new device
TelixVersion Returns a value indicating the version of Telix
Terminal Processes any characters waiting in the receive buffer
TransTab Load or clear a specified translation table device
Update_Term Updates Telix with changes to colors and formats

Script Management:

ArgCount Reports the number of parameters passed
CallD Load and execute a script
Is_Loaded Determines if a given script is already loaded
Load_Scr Loads a script into memory but does not run it
ScriptVersion Reports the version of SALT running this script
TelixForWindows Determines if Telix is the DOS or Windows version
Unload_Scr Unloads a script from memory

Sound Functions:
Alarm Generates standard alarm sound via .WAV file
PlayWave Plays the specified Windows .WAV sound file
Tone Generates the specified tone through the PC Speaker

String Handling:
CopyChrs Copies characters from one string to another
CopyStr Copies one string into another string at a given point
DelChrs Deletes a number of characters from a string
GetS Gets a string from the users keyboard via prompt
GetSXY Prompts the user to input a string at a certain location
InputBox Standard Windows edit prompt w/ OK and CANCEL
InsChrs Insert characters from one string into another string
ItoS Converts an integer value to a string of ASCII digits
SetChr Puts a character into a string at a given position
SetChrs Puts a string into another string at a given position
StoI Converts a string of digits into an integer value
StrCat Concatenates one string to the end of another string
StrCmpI Compares a pair of strings, ignoring upper/lower case
StrLen Determines the length of a null-terminated string
StrLower Converts a string of characters to all lower case
StrMaxLen Returns the maximum number of chars a string holds
StrPos Search for a given string in another string
StrPosI Search for a string in another string, ignoring case
StrUpper Converts a string of characters to all upper case
SubChr Returns the character found at a given string position
SubChrs Returns a substring of given length from a string
SubStr Returns a substring within a string stopping at NULL

Time, Date and Timer Operations:
CurTime Returns the current time of day
Date Returns the current date
Delay Delays Telix for a number of tenths of seconds
Delay_Scr Delays scripts but not Telix for n tenths of a second
tDay Returns the day portion of the date as a number 1-31
tHour Returns the hour part of the time as a number 0-23
tMin Returns the minute part of the time as a number 0-59
tMonth Returns the month part of the date as a number 1-12
tSec Returns the seconds part of the time as a value 0-59
tYear Returns the year of the date as a number 1970-2019
Time Returns the current time of day
Time_Up Checks to see if a set timer has elapsed
Timer_Free Releases a set timer handle; turns off a timer

Timer_Restart Restarts a timer at a given count
Timer_Start Starts a timer in a value of tenths of a second
Timer_Total Returns tenths of a sec. since a time was (re)started

Video Operations:
Box Creates a box on the screen, in color
CNewLine Sends a carriage return to the terminal device
Cursor_OnOff Turns the cursor on or off
Clear_Scr Clears the current terminal window
GetTermHeight Returns the current terminal height in chars
GetTermWidth Returns the current terminal width in chars
GetX Returns the current character column position
GetY Returns the current character row position
GotoXY Moves the cursor to the given (x,y) char position
MsgBox Present a standard Windows dialog, specified buttons
NewLine Sends a LineFeed to the terminal device
PrintC Print a character on the screen, but do not send it
PrintC_Trm Print a character on the screen, including ^M-types
PrintN Print the specified integer on the screen as a string
PrintN_Trm Print the specified number on the screen via the term
PrintS Prints a string on the screen, but does not send it
PrintS_Trm Prints a string on screen thru the terminal emulation
PrintSC Prints a string on the screen, does not move cursor
PrintSC_Trm Prints a string thru emulation, does not move cursor
PStrA Prints a string to the screen with given color attributes
PStrAXY Prints a string at a given location, in a given color
Scroll Scrolls or clears a region on the screen
Status_Wind Pops up a timed, information window with your text
vGetChr Gets the character and its color from a given location
vGetChrs Gets a string of characters from a screen position
vGetChrsA Gets a string and its attributes from a screen location
vPutChr Puts a character and color into a screen position
vPutChrs Puts a string of characters onto the screen
vPutChrsA Puts a string and attributes onto the screen
vRstrArea Restores a previously saved buffer to the screen
vSaveArea Saves a screen region to a buffer for later restoration

New & Changed SALT Functions
To help you quickly locate functions that have been added to SALT II and review changes that have been
made to existing functions, use the lists below.

New Functions:

ArgCount GetTermWidth PlayWave Set_ConnectDe
vice

CNewLine InputBox PrintC_Trm ScriptVersion
CPutN MsgBox PrintN_Trm TelixForWindow

s
ConnectDevice
Name

NewLine PrintS_Trm TelixVersion

GetTermHeight NumConnectD
evices

Random

Changed Functions:

Alarm fRead KeySet Terminal
Call fWrite Run WaitFor
Dial Get_Baud Set_Port
Dos GotoXY Show_Director

y

FileFind KeyGet Status_Wind

Alarm Function
Example

Alarm(int times);
The alarm function plays the wave sound defined in the Sounds configuration as Alarm.

Argument Description
int Times The number of times

to play the wave
sound.

Return Value
The number of times the alarm was
sounded.

See also

PlayWave, Tone, _alarm_on, _sound_on

Alarm Example

// Sounds an alarm until a key is pressed.
while (!inkey())
 alarm(1);

ArgCount Function
Example

ArgCount();
The argcount function determines the number of parameters that were passed    to a script that was
executed via the call or calld function.

Return Value
The number of parameters passed.

ArgCount Example

if (ArgCount() < 1)
 prints("Called script requires at least one parameter.");

Box Function
Example

Box(int x, int y, int x2, int y2, int style, int hollow, int
color);
The box function is used to create a box on the screen.    The box must fit within the confines of the
screen.

Argument Description
int x, int y Upper left corner of the box.
int x2, int y2 Lower right corner of the box.
int style Specifies what kind of border

to use:
0
Spaces
1 Single lines
2 Double lines
3 Single vertical lines,

double horizontal
lines

4 Double vertical lines,
single horizontal lines

int hollow If non-zero, the inside of the
box will not be cleared.

int color The desired color of the box.

Return Value
A zero is always returned.

See also

Scroll

Box Example

box(10, 10, 70, 20, 1, 0, 112); // draw box with black characters on
 // white background. The upper left
 // corner is 10, 10 and the lower
 // right corner is 70, 20.

Call Function
Call(str scriptname, arg1, arg2, ..., argn);
The call function now acts in exactly the same manner as calld, and it is included only for compatibility
with Telix for DOS.

See also

CallD, Load_Scr, Unload_Scr, Is_Loaded

CallD Function
Example

CallD(str scriptname, arg1, arg2, ..., argn);
The calld function is used when one script file must call (jump into and then return from) another.

Argument Description
str
scriptname

The name of the script file to call.    If no
extension is given, .SLC is assumed.

arg1, ... argn The parameters to pass to the called scripts
main function.

Return Value
The value returned by the called scripts main function.    It can
be either an integer or a string, although called scripts cannot
return string variables that are local to itself.    If the script
cannot be loaded, or it is aborted by the user, a value of -1 is
returned.

See also

Load_Scr, Unload_Scr, Is_Loaded

CallD Example

stat = calld("TEST");
if (stat == -1)
 prints("Called script could not be loaded or was aborted!");

Capture Function
Example

Capture(str filename);
The capture function is used to open, close, pause, and unpause the Telix capture file.    Depending on
what the string variable filename contains, different actions will take place.

Argument Description
str filename If a valid filename (which can include a path),

Telix opens and starts capturing data to the
file.

If filename is *CLOSE* and the capture file is
open, it is closed.

If filename is *PAUSE* and the capture file is
open, capturing is suspended.

If filename is *UNPAUSE* and the capture file
is paused, capturing is resumed.

If filename is an empty string (), Telix takes the
same action as if the user had selected
Capture Log from the File menu.

Return Value
A value of -1 is returned if there is a problem performing the
indicated function, otherwise a non-zero (TRUE) value is
returned.

See also

Capture_Stat, Printer, _capture_fname

Capture Example

if (capture("TELIX.CAP") == -1)
 prints("Error opening capture file!");
 ...
capture("*PAUSE*");
capture("*UNPAUSE*");
capture("*CLOSE*");

Capture_Stat Function
Example

Capture_Stat();
The capture_stat function determines the state of a capture file.

Return Value
Returns an integer value representing the current status of the
capture file, as follows:

0 Capture File is closed.
1 Capture File is open.
2 Capture File is open and paused.

See also

Capture, Usage_stat

Capture_Stat Example

int stat;
stat = capture_stat();
switch (stat)
 {
 case 0: prints("Capture file is closed.");
 break;
 case 1: prints("Capture file is open.");
 break;
 case 2: prints("Capture file is open but paused.");
 break;
 default: prints("Unable to determine capture file status.");
 }

Carrier Function
Example

Carrier();
The carrier function determines whether there is a carrier present or not by checking the Carrier Detect
signal of the modem.    Note that some modems by default override the real state of the signal and always
send a high.    For this function to work, the modem must be told to supply the real signal.    This function
may be used to check if Telix is connected to a remote service over the modem, as the Carrier Detect
signal should be on if there is a connection.    Note also that if you are connecting two computers via a
null-modem cable, the value returned will depend on the wiring of the cable being used.

Return Value
Returns a non-zero (TRUE) value if the
Carrier Detect signal coming from the
modem is on (high), otherwise it returns
a zero (FALSE) value.

Carrier Example

if (carrier())
 prints("We are online.");
else
 prints("We are offline.");

cGetC Function
Example

cGetC();
The cgetc function returns the first character waiting in the received data communications buffer.    The
cinp_cnt function may be used to see if there are any characters waiting in the buffer.

Return Value
Returns the first character waiting in the
communications buffer.    If there are no
characters in the buffer, a value of -1 is
returned.

See also

cGetCT, cInp_Cnt

cGetC Example

// If there are characters in the buffer, get the first and put it in chr.
int chr;
if (cinp_cnt())
 chr = cgetc();

cGetCT Function
Example

cGetCT(int timeout);
The cgetct functions returns a character from the communications port, waiting up to a specified time to
receive one.    If a character is already waiting in the communications buffer, it is immediately returned.

Argument Description
int timeout The amount of time to wait in tenths of

seconds.

Return Value
Returns the first character received in the
communications buffer in the specified time.    If no
character is received within the timeout period, a value of
-1 is returned.

See also

cGetC, cInp_Cnt

cGetCT Example

// Wait for up to 10 seconds to receive a character and put it in chr.
int chr;
if ((chr = cgetct(100)) == -1)
 prints("Timeout!");
else
 printc(chr);

ChatMode Function
ChatMode(int echo_remote);

The chatmode function is not supporte in this version of Telix for Windows.

temp
Beta Note:

This function has not yet been implemented.

The chatmode function enters the built-in chat mode.

Argument Description
int
echo_remote

If non-zero (TRUE), characters typed
by the remote user are echoed back
to the remote.

Return Value
A zero is always returned.

cInp_Cnt Function
Example

cInp_Cnt();
The cinp_cnt function determines the number of characters waiting in the communications buffer.

Return Value
Returns the number of characters
waiting in the received data
communications buffer.

See also

cGetC, cGetCT

cInp_Cnt Example

if (cinp_cnt() > 10) // if more than 10 chars waiting
 handle_stuff(); // do action
while (!cinp_cnt()) // loop until a character is available
 ;
if (cinp_cnt()) // if something available, get it
 c = cgetc();

Clear_Scr Function
Clear_Scr();
The clear_scr function clears the screen and places the cursor in the upper left corner at position 0,0.

Return Value
A zero is always returned.

See also

Scroll

CNewLine Function
CNewLine();
The cnewline function is used to send a carriage return to the terminal.    No line feed is sent.

Return Value
A non-zero (TRUE) value is returned unless the
character can not be sent for some reason, in
which case a value of -1 is returned.

See also

NewLine

ConnectDeviceName Function
Example

ConnectDeviceName(int num, str buffer);
The connectdevicename function is used to retrieve the name of a specified connect device.

Argument Description
int num The number of the

connect device to
retrieve.

str buffer The variable to hold
the name of the
connect device.

Return Value
The buffer string is returned.

See also

NumConnectDevices, Set_ConnectDevice

ConnectDeviceName Example

int num;
str buff[30];
for (num = 1; num <= numconnectdevices; ++num)
 prints(connectdevicename(num, buff));

CopyChrs Function
CopyChrs(str source, str target, int pos, int count);
The copychrs function copies a number of characters from one string into another and returns target.   
Note that string indexes begin at 0, not 1 as in some languages.   

Argument Description
str source The string to copy characters from.
str target The variable to copy characters to.
int pos The index of target string to begin copying

characters to.
int count The maximum number of characters to copy.    If

target is not large enough to hold all characters,
only as many as will fit are copied.

Return Value
The target string is returned.

This function is very similar to copystr, except that it is not string oriented, and therefore does not stop
copying characters when a 0 value (NULL) character is encountered.

See also

CopyStr, SubChrs, SubStr

CopyStr Function
CopyStr(str source, str target, int pos, int count);
The copystr function copies from the source string into target string and returns target.    Characters are
copied until a 0 (NULL) value is encountered, normally at the end of every string, or count characters are
copied.    A 0 (NULL) is always copied to the end of the target string, but is not included as part of count.

Argument Description
str source The string to copy characters from.
str target The variable to copy characters to.
int pos The index of target string to begin

copying characters to.
int count The maximum number of characters to

copy.    If target is not large enough to
hold all characters, only as many as will
fit are copied.

Return Value
The target string is returned.

See also

CopyChrs, SubStr, SubChrs

cPutC Function
Example

cPutC(int character);
The cputc function sends a character to the communications port.

Argument Description
int character The ASCII value of the

character to be sent.

Return Value
A non-zero value is returned unless the character
can not be sent for some reason, in which case a
value of -1 is returned.

See also

cPutN, cPutS

cPutC Example

cputc('A');
cputc(27); // send Escape to the comm port
cputc('^M'); // send Ctrl-M (Carriage Return)
cputc(inkeyw());

cPutN Function
Example

cPutN(int number);
The cputn function sends an integer number to the communications port.

Argument Description
int number The integer value to

be sent.

Return Value
A non-zero (TRUE) value is returned
unless the number can not be sent for
some reason, in which case a value of -
1 is returned.

See also

cPutC, cPutS

cPutN Example

int i;
i = 23;
cputn(27);
cputn(i);

cPutS Function
Example

cPutS(str outstr);
The cputs function sends the specified string out over the communications port.    A carriage return and
line feed are not appended to the string.

Argument Description
str outstr The string to be sent.

Return Value
A non-zero (TRUE) value is returned unless the
character can not be sent for some reason, in
which case a value of -1 is returned.

See also

cPutC, cPutN, cPutS_TR

cPutS Example

cputs("Good-bye^M"); // Send the string "Good-bye" followed
 // by a carriage return (ENTER).
str password[] = "mypass";
cputs(password); // Send the contents of the password variable.

cPutS_Tr Function
Example

cPutS_Tr(str outstr);
The cputs_tr function sends the specified string to the communications port, but pays attention to two
output string translation characters,    ^ and ~, described in the Telix for Windows manual and in the SALT
Syntax section of this help file.    This function is really only useful for sending the modem control strings
that the user has defined in the configuration.

Argument Description
str outstr The string to sent.

Return Value
A non-zero (TRUE) value is returned unless the
character can not be sent for some reason, in
which case a value of -1 is returned.

See also

cPutS

cPutS_Tr Example

cputs_tr(_modem_init);
cputs_tr("good-bye~yes^M");

Cursor_OnOff Function
Cursor_OnOff(int state);
The cursor_onoff functions turns the blinking cursor on or off.

Argument Description
int state If non-zero (TRUE),

the cursor is disabled. 
If zero (FALSE), the
cursor is enabled.

Return Value
A zero is always returned.

CurTime Function
Example

CurTime();
The curtime function returns the current date and time as the number of seconds since January 1, 1970.   
The date and time value in this format is used by many SALT functions.

See also

Date, Time, tYear, tMonth, tDay, tHour, tMin, tSec

CurTime Example

// Print the current date
int t;
str s[64];
t = curtime();
date(t, s);
prints(s);

Date Function
Example

Date(int timeval, str buffer);
The date function converts a Telix date value into a date string of the form specified by Windows
(controlled through Windows' Control Panel).   

Argument Description
int timeval The date, represented as the number

of seconds since January 1, 1970.   
This format is returned by curtime    and
filetime, among others.

str buffer A variable to receive the properly
formatted string.

Return Value
A zero is always returned.

See also

Time, Curtime, FileTime

Date Example

str s[16];
printsc("The current date is ");
date(curtime(), s);
prints(s);

Delay Function
Delay(int duration);
The delay function pauses the current script for a length specified amount of time.    During this pause,
everything is shut off except the asynchronous reception of characters from the communications port and
mouse movement.    Received characters are stored in the input buffer, and are NOT processed until after
the delay.

Argument Description
int duration The amount of time to delay in tenths

of seconds.

Return Value
The duration parameter is returned.

See also

Delay_Scr

Delay_Scr Function
Delay_Scr(int duration);
The delay_scr function pauses only the execution of the current script file for a specified amount of time.   
During that time, characters coming in from the serial port are printed on the terminal screen, and user
keystrokes are also processed.

Argument Description
int duration The amount of time to

delay in tenths of
seconds.

Return Value
The duration parameter is returned.

See also

Delay

DelChrs Function
Example

DelChrs(str s, int pos, int num);
The delchrs function is used to remove or delete a number of characters in a string at a certain position.   

Argument Description
str s The string to delete

the characters from.
int pos The index of the string

from which to begin
deleting characters.

int num The number of
characters to be
deleted.

Return Value
The target string is returned.

See also

InsChrs

DelChrs Example

// remove all but the first and last characters in a string
str s[] = "0123456789";
delchrs(s, 1, strlen(s) - 2);

Dial Function
Example

Dial(str dialstr, int maxtries, int no_link);
The dial function allows you to dial entries in a variety of manners, and it allows control over the number
of attempts and whether or not to execute linked scripts.

Argument Description
str dialstr A string containing the entries to be dialed.    Entries can be

specified as the PhoneBook entry number, the PhoneBook
entry name, or partial name, enclosed in pipe (|) symbols, or a
manually entered number prefaced by an m.    If an actual pipe
symbol is required, use a double pipe (||).    If dialstr is empty
() then the PhoneBook is displayed.

int maxtries The maximum number of dialing attempts to make.    This is the
total number of attempts, regardless of the number of entries
being dialed.    For instance, if three entries are to be dialed and
maxtries is 6, each entry will be attempted twice.    If maxtries is
0, dialing will continue until a connection is established.

int no_link If non-zero (TRUE) and the entry connected has a linked script
file, that script will NOT be executed.    If no_link is zero
(FALSE), linked scripts will be executed.

Return Value
If a connection is established, the dial function returns the entry number that
was connected to (or 1 if a manual number was dialed).    If no connection was
established, 0 is returned.    If dialstr is incorrectly formatted, -1 is returned.

When a connection is successfully established, several items of information regarding the entry are
placed in System Variables.    These variables are fully described in the _entry_info section.

See also

Redial, _entry_enum, _entry_logonname, _entry_name, _entry_num, _entry_pass

Dial Example

int stat;
str number_list[255];
// The first dial will dial entry #10, the first entry with "delta" in it,
// entry #15, and My Pipe | BBS until a connection has been established,
// but do not execute any linked scripts.
dial("10 |delta| 15 |My Pipe || BBS|", 0, 1);
// Dial the number "967-1111" a maximum of 5 times. A no_link parameter is
// not required since a manual number is not going to have a linked script.
dial("m967-1111", 5);
// Construct the dial list in the variable number_list, dialing no more
// than 10 times total, and executing any linked scripts attached to the
// entry that establishes a connection.
number_list = "10 2 5 |deltaComm Online| 8";
stat = dial(number_list, 10, 0);

Dos Function
Example

Dos(str command, int mode);
The dos function calls the DOS command interpreter, usually COMMAND.COM, to open a DOS window,
or execute a DOS based program.    The command processor is found by attempting to run the
DOSPRMPT.PIF program information file.

This function differs from the run function in that it is used ONLY to launch DOS programs.    The run
function should be used, when possible, as it can handle either Windows or DOS programs.    The only
situations that you may find the dos function useful are performing actual COMMAND.COM built-in
functions (such as DEL, COPY, REN).    Note that most of DOS' built-in functions have equivalent SALT
functions, thus reducing the need for this function further.

Argument Description
str command Parameters to be passed to the command

interpreter.    If empty (), Telix will open a DOS
window and await further action.    If you specify a
command or program that expects user input,
make sure you are on hand to provide it.

int mode This parameter does not apply to Telix for
Windows, and it is included only for compatibility
with Telix for DOS.

Return Value
The dos function returns a -1 if the command processor can not be
found or there is not enough memory to load it, otherwise a 0 is
returned.

See also

Run, DosFunction

Dos Example

// copy all files from the A: drive to the C: drive.
dos("copy a:*.* c:", 0);

DosFunction Function
DosFunction();
The dosfunction function calls up the File menu, as if the user had pressed Alt-F while in terminal mode.   
This function is included for compatibility with Telix for DOS and is not recommended for use.

See also

Dos, Run

ExitTelix Function
Example

ExitTelix(int returncode, int hangup);
The exittelix function closes any currently open log file and exits Telix as if the user had pressed Alt-F4
while in terminal mode.

Argument Description
int returncode The value that should be returned

to Windows.    This value seems to
be ignored by most Windows shell
programs, but is included for
compatibility with Telix for DOS.

int hangup If non-zero (TRUE), Telix will hang
up before exiting, otherwise the
connection will not be disturbed.

Return Value
This function causes the termination of the script,
thus there will never be a return value.

ExitTelix Example

// Exit Telix and break any connection which may be established.
exittelix(0, 1);
// Exit Telix without disturbing any connection which may be established.
exittelix(0, 0);

fClearErr Function
Example

fClearErr(int fh);
The fclearerr function clears the error flag and the End Of File (EOF) flag associated with an opened file.

Argument Description
Int fh The file handle

representing the file to
clear the error flags
for.

Return Value
A zero is always returned.

See also

fError, fEof

fClearErr Example

int f;
f = fopen("test.dat", "r");
// Perform reading operations here.
if (ferror(f))
 fclearerr(f);

fClose Function
Example

fClose(int fh);
The fclose functions closes a file previously opened for reading or writing with the fopen function.    If the
file was opened for writing, any data which is still buffered and waiting to be written out to disk is written
before the file is closed.

Argument Description
int fh The file handle

representing the file to
be closed.

Return Value
A -1 is returned if there is a problem
closing the file, otherwise a zero is
returned.

See also

fOpen

fClose Example

int f;
f = fopen("test.dat", "w");
// Perform read/write operations.
fclose(f);

fDelete Function
Example

fDelete(str filename);
The fdelete function is used to delete a disk file from within a script.

Argument Description
str filename The name of the file to

delete, optionally
including a full drive
and path.    Wildcard
characters (* or ?)
may not be part of
filename.

Return Value
A value of -1 is returned if there is a
problem deleting the file, otherwise a
zero is returned.

See also

fRename

fDelete Example

if fdelete("C:\UTIL\TLX\TELIX.CAP") == -1 // delete an old capture file
 prints("Error deleting file.");

fEOF Function
Example

fEOF(int fh);
The feof function determines if a file has reached the end-of-file position.

Argument Description
int fh The file handle

representing the file to
operated on.

Return Value
A non-zero (TRUE) value is returned if
the file position is at the end of the file,
otherwise a zero (FALSE) value is
returned.

See also

fClearErr, fError

fEOF Example

int f, chr;
f = fopen("test.dat", "r");
while ((chr = fgetc(f)) != -1) // print contents of file
 printc(chr);
if (feof(f))
 prints("Reached end of file.");
else
 prints("Error reading file");

fError Function
Example

fError(int fh);
The ferror function checks a file to determine if an error has occurred when using it.    A file's error flag
stays set until it is cleared with fclearerr or the file is closed using fclose.

Argument Description
int fh The file handle

representing the file to
checked.

Return Value
A non-zero (TRUE) value is returned if
the error flag is set, otherwise a zero
(FALSE) is returned.

See also

fClearErr, fEof

fError Example

int f;
f = fopen("test.dat", "r"); // open file only for reading
fputs("This should set the error flag!", f);
if (ferror(f))
 prints("Error writing to file!");
fclose(f);

fFlush Function
fFlush(int fh);
The fflush function flushes the buffer associated with a file.    If the file is opened for writing, any
characters in the buffer are written.    If the file is opened for reading, the buffer is cleared.

Argument Description
int fh The file handle

representing the file to
flushed.

Return Value
A value of -1 is returned if there is a
problem flushing the buffer, otherwise a
zero is returned.

See also

fOpen, fClose

fGetC Function
Example

fGetC(int fh);
The fgetc function retrieves the next character from a specified file.    The file must have been opened for
reading or for reading and writing using the fopen function.

Argument Description
int fh The file from which the

character is to be
read.

Return Value
If successful, the character read is
returned, or -1 if the end of the file has
been reached or an error is
encountered.

See also

fOpen, fPutC, fError, fEOF

fGetC Example

int f;
f = fopen("test.dat", "r");
while (!feof(f)) // print all the characters in the file
 {
 printc(fgetc(f));
 if fError(f)
 {
 prints("An error has occurred.");
 break;
 }
 }
fclose(f);

fGetS Function
Example

fGetS(str buffer, int n, int fh);
The fgets function reads characters from a file into a string variable.    Reading stops when a line feed
character (ASCII #10) is read, the end of file (EOF) is encountered, a read error occurs, or a specified
number of characters have been read.    The line feed character (and the carriage return that usually
precedes it on MS-DOS systems) is not kept as part of the string.

Important: The SALT implementation of the fgets() function differs from the C language function of the
same name.    While both implementations read until the line feed character, C keeps that character as
part of the input string, while SALT doesn't.    This change was made because in almost every case, the
line feed is not needed, and would otherwise have to be manually stripped by the script after every read.

Argument Description
str buffer The variable to receive

the string read from
the file.

int n The maximum number
of characters to be
read.

int fh The file handle from
which to read the
string.

Return Value
A value of -1 is returned if there is a
read error, or if the end of file (EOF) is
encountered before any characters can
be read.    If successful, a zero is
returned.

See also

fOpen, fputs

fGetS Example

int f;
str s[200];
f = fopen("test.dat", "r");
while (!feof(f)) // print out contents of text file
 {
 fgets(s, 200, f);
 if (!fError(f))
 prints(s);
 else
 {
 prints("An error has occurred.");
 break;
 }
 }
fclose(f);

FileAttr Function
Example

FileAttr(str filespec);
The fileattr function determines the DOS attributes of a specified file.

Argument Description
str filespec The name of the file

that may optionally
include a drive and
directory, as well as
the DOS wildcard
characters * and ?.    If
empty (), the attributes
of the last file found
with the filefind,
filesize , or filetime     
function is returned.

The following is a brief description of the attributes that may be returned.    For further explanation, see
your DOS manual.

Return Value Description
 -1 The specified file

could not be found.
    1 Read only file.
    2 Hidden file.
    4 System file.
    8 Volume label.    This is

the volume name of
the disk.

16 Subdirectory.
32 Archive bit.

See also

FileFind, FileSize, FileTime

FileAttr Example

int attr;
str filename[64];
gets(filename, 64);
attr = fileattr(filename);
if (attr & 6) // system and hidden added together
 prints("This file is marked as hidden and system");
else
 {
 if (attr == -1) then
 prints("File not found.");
 if (attr & 1) then
 prints("Read-Only");
 if (attr & 2) then
 prints("Hidden");
 if (attr & 4) then
 prints("System");
 if (attr & 8) then
 prints("Volume Label");
 if (attr & 16) then
 prints("Subdirectory");
 if (attr & 32) then
 prints("Archive");
 }

FileFind Function
Example

FileFind(str filespec, int attrib[, str buffer]);
The filefind function is used to search for the existence of one or more files or subdirectories.    The size,
date, time, and attributes of the matched file can be determined with the filesize, filetime, and fileattr
functions, respectively.

Argument Description
str filespec The file specification which may include

a drive and path as well as a filename,
and may use the DOS wildcard
characters * and ?.    If empty, filefind
searches for the next file matching the
filespec used in the previous call to
filefind.

int attrib File attributes that must be set for files
to match.    See fileattr    for more
information.

str buffer The variable to place matching
filenames in (drive and path are NOT
included).    This parameter is optional
and need not be included if only testing
for file existence.

Return Value
A non-zero (TRUE) value is returned if a matching file is
found, otherwise a value of zero (FALSE) is returned

See also

FileSize, FileTime, FileAttr

FileFind Example

// Constants to provide easier more readable function calls.
#CONST faNormal 0
#CONST faReadOnly 1
#CONST faHidden 2
#CONST faSystem 4
#CONST faVolumeID 8
#CONST faDirectory 16
#CONST faArchive 32

//
// The first example is a simplified, but quite functional, //
// to determine if a file exists. //
// EX: if FileExist("C:\AUTOEXEC.BAT")
//
FileExists(str fname)
 {
 int result;
 result = filefind(fname, faNormal);
 if (result)
 return 1;
 else
 return 0;
 }
//
// Show all normal files in the specified directory //
// EX: ShowDirectory("C:\DOS\"); //
//
ShowDirectory(str path)
 {
 str buf[16], fspec[16];
 // Set local variable equal to the passed directory.
 fspec = path;
 // Tack the *.* wildcard specification onto the end of the directory.
 strcat(fspec,"*.*");
 // Continue to loop as long as we find files. Note also that we have
 // given a third paramter, buf, to put the files found into.
 while (filefind(fspec, faNormal, buf) != 0)
 {
 prints(buf); // show file found
 fspec = ""; // so we can continue searching for files
 }
 }
//
// show all files with both the hidden and system attributes in the //

// root directory of drive
C: // //////////////////////////////////
////////////////////////////////////
fspec = "C:*.*";
// note that 6 could be substituted for "(faHidden && faSystem)" below.
while (filefind(fspec, (faHidden && faSystem), buf) != 0)
 {
 prints(buf); // show file found
 fspec = ""; // so we can continue searching for files
 }

FileSize Function
Example

FileSize(str filespec);
The filesize function determines the size in bytes of a file.

Argument Description
str filespec The name of the file

that may include a
drive and directory, as
well as the DOS
wildcard characters *
and ?.    If empty (), the
size of the last file
found with the filefind   
function is returned.

Return Value
An integer value representing the size
of the indicated file is returned, or a
value of -1 is returned if the specified
file could not be found.

See also

FileFind, FileTime, FileAttr

FileSize Example

str filespec[24] = "*.*", buf[12];
int size;
size = filesize("TELIX.EXE"); // get size of file TELIX.EXE
// Add up size of all files in the current directory
size = 0;
while (filefind(filespec, 0) != 0) // until no more files
 {
 size = size + filesize(""); // get size of last filefound file
 filespec = ""; // make sure filespec is "" on sub-
 // sequent calls to filefind to
 // continue searching for files
 // with the original specification.
 }

FileTime Function
Example

FileTime(str filespec);
The filetime function determines the date and time stamp of a file.    A date and time value in this format
can be used by the date, time, tyear, tmonth, tday, thour, tmin, tsec, as well as other functions

Argument Description
str filespec The name of the file

that may include a
drive and directory, as
well as the DOS
wildcard characters *
and ?.    If empty (), the
size of the last file
found with the filefind   
function is returned.

Return Value
The value returned represents the files
modification date as the number of
seconds since January 1, 1970.    If the
file cannot be found, a value of -1 is
returned.

See also

FileFind, FileSize, FileAttr

FileTime Example

main()
 {
 int ftime;
 str s[16];
 ftime = filetime("TELIX.EXE");
 if (ftime == -1)
 prints("'TELIX.EXE" could not be found!");
 else
 {
 printsc("TELIX.EXE was created at ");
 time(ftime, s);
 printsc(s);
 printsc(" on ");
 date(ftime, s);
 printsc(s);
 }
 // this example assumes both files exist
 if (filetime("FILE1") < filetime("FILE2"))
 prints("FILE1 is older than FILE2");
 else
 prints("FILE1 is newer than FILE2");
 }

FlushBuf Function
FlushBuf();
The flushbuf function flushes (throws away) any characters that may be waiting in Telix's input (receive)
buffer.    One use for this command is to discard characters before starting a file transfer.

fnStrip Function
Example

fnStrip(str filename, int specifier, str target);
The fnstrip function allows specific parts of a filename to be extracted.    In the MS-DOS and Windows
operating systems, a filename can consist of up to four parts:    the drive, the path, the name, and the
extension.

Argument Description
str filename The filename to be

processed.
int specifier Determines what

portions of the
filename are to be
extracted, according to
the table below.

str target The variable to hold
the specified sections
of the filename.

Specifier Description
    0 Full file name.
    1 All except the drive.
    2 Drive, name, and

extension.
    3 Name and extension.
    4 Drive, path, and name

(no extension).
    5 Path and name (no

extension).
    6 Drive and name (no

extension).
    7 Name only (no

extension).
12 Drive and path only.
13 Path only.
 14 Drive only.

Return Value
A zero is always returned.

See also

FileFind

fnStrip Example

str filename[64], shortname[16];
gets(filename, 64); // ask for a filename
fnstrip(filename, 3, shortname); // keep only name & extension
prints(shortname);

fOpen Function
Example

fOpen(str filename, str mode);
The fopen function is used to open or create a disk file for reading and/or writing.    Only eight files may be
open at one time, therefore it is very important to close files when they are no longer needed.    If a file is
opened for both reading and writing (when "r+", "w+", or "a+" are used as the mode), an fseek operation
is necessary before switching from reading and writing.

Argument Description
str filename The file to be opened

or created.
str mode Specifies what type of

operations are to be
allowed.    See the
following table for legal
values.

Mode Description
r Open file for reading.
w Open file for writing,

destroying any current
contents.

a Opens the file for
appending (writing at
end of the file).    If the
file does not exist, it is
created.

r+ Opens file for reading
and writing.    Initial
position is at the
beginning of the file,
which must exist.

w+ Opens file for reading
and writing, destroying
any current contents.

a+ Opens file for reading
and appending.    If the
file does not exist, it is
created.

Return Value
The value returned is a handle, which
is simply an integer number, by which
the file is to be referred to in all
subsequent file operations.    A value of
zero (FALSE) is returned if the file can
not be opened.

See also

fClose

fOpen Example

int f;
str s[200];
f = fopen("test.dat", "r");
if (!f)
 prints("Could not open data file.");
else
 {
 while (!feof(f)) // print out contents of text file
 {
 fgets(s, 200, f);
 if (!fError(f))
 prints(s);
 else
 {
 prints("An error has occurred.");
 break;
 }
 }
 fclose(f);
 }

fPutC Function
Example

fPutC(int c, int fh);
The fputc function writes a character to a file.

Argument Description
int c The character to write

to the file.
int fh The file handle

specifying the
previously opened file
to write to.

Return Value
The character written is returned,
unless there is an error, in which case a
value of -1 is returned.

See also

fPutS, fGetC

fPutC Example

int f, i;
str teststr[] = "This is a test string";
f = fopen("test.dat", "w");
for (i = 0; i < (strlen(teststr)); ++i) // write out string to file
 fputc(subchr(teststr, i), f); // character by character
fclose(f);

fPutS Function
Example

fPutS(str s, int fh);
The fputs function writes a string to a file.    Characters are written from the string until a zero (0) value is
encountered, but the zero is not written.    All SALT strings end with a zero.

Argument Description
str s The string to be

written.    It must not
be more than 512
bytes in length.

int fh The file handle
specifying the
previously opened file
to write to.

Return Value
A 0 value is returned if the write is
successful, a non-zero value if it is not.

See also

fPutC, fGetS

fPutS Example

int f, i;
f = fopen("test.dat", "w");
for (i = 0; i < 100; ++i) // write out "Hello" and a new-
 fputs("Hello^M^J", f); // line one hundred times
fclose(f);

fRead Function
Example

fRead(var buf, int count, int fh);
The fread function reads a specified number of bytes from a file into a variable.

Argument Description
var buf Either a string or

integer variable.    The
variable must be large
enough to hold values
read.

int count The number of bytes
to read from the file.   
If buf is an integer
type, count must be 4
or less.    Greater
values will be
truncated.

int fh The file handle
specifying the
previously opened file
to write to.

Return Value
The number of bytes actually read is
returned, which may be less than asked
for if an error occurs or an end of file
(EOF) is encountered.    The ferror and
feof functions should be used to
distinguish an error from an end of file
(EOF) condition.

See also

fWrite

fRead Example

int f, i;
str buffer[40];
f = fopen("test.dat", "r");
fseek(f, 1000, 0); // goto offset 1000 in file
fread(buffer, 40, f); // and read 40 bytes of data into buffer
fread(i, 4, f); // read an integer into i
fread(i, 2, f); // read least significant bytes of an integer into i
fclose(f);

fRename Function
Example

fRename(str oldname, str newname);
The frename function is used to rename a disk file.    Renamed files can not change drives or paths, only
file names and extensions.

Argument Description
str oldname The name of the file to

be renamed, which
may include a drive
and path.

str newname The new name of the
file, which should not
include a drive and
path.

Return Value
If successful, frename returns a 0 value,
otherwise a non-zero value is returned.

See also

fDelete

fRename Example

if (frename("C:\TFW\TELIX.CAP", "OLDTLX.CAP") == 0)
 prints("C:\TFW\TELIX.CAP renamed to C:\TFW\OLDTLX.CAP");
else
 prints("Could not rename C:\TFW\TELIX.CAP");

fSeek Function
Example

fSeek(int fh, int offset, int origin);
The fseek function sets the position for reading and/or writing in an open file.    The pointer can be
positioned anywhere in the file, and even past the end of the file (which will extend it).    It is illegal to try to
position the pointer before the beginning of the file however.

Argument Description
int fh The file handle

specifying the
previously opened file
to position.

int offset The signed offset from
the location specified
in origin.

int origin 0 Beginning of file.
1 Current file

position.
2 End of file.

Return Value
If successful, fseek returns a 0 value,
otherwise a non-zero value is returned.

See also

fTell

fSeek Example

int f;
f = fopen("test.dat", "r");
fseek(f, 0, 0); // go to offset 0 in file.
fseek(f, 1000, 0); // go to offset 1000 in file.
fseek(f, -5, 1); // go back 5 places in file from current position.
fseek(f, 0, 2); // go to the end of the file.
fclose(f);

fTell Function
fTell(int fh);
The ftell function returns the current file position of a file.    This is usually the position where the next read
or write operation will take place, however for a file opened in Append mode, the value returned will not
necessarily return the position of the next write, since Append mode will force writes to the end of file
regardless of the current file position.

Argument Description
int fh The file handle

specifying the
previously opened file
to determine the
position of.

Return Value
A -1 value is returned if an error occurs,
otherwise a zero value is returned.

See also

fSeek

fWrite Function
Example

fWrite(var buf, int count, int fh);
The fwrite function writes bytes from a variable or constant to a file.

Argument Description
var buf An integer or string

value to be written to
the file.

int count The number of bytes
to write to the file.    If
buf is an integer type,
count must be 4 or
less.    Greater values
will be truncated.

int fh The file handle
specifying the
previously opened file
to write to.

Return Value
The number of bytes actually written are
returned, which may be less than
requested if an error occurred.

See also

fRead

fWrite Example

int f, i;
str buffer[] = "1234567890123456789012345";
f = fopen("test.dat", "w");
i = 257;
fwrite(buffer, strlen(buffer), f); // write test pattern to file
fwrite(i, 4, f); // write i to the file
fwrite(i, 1, f); // write only the least
 // significant byte of i (256)
fclose(f);

Get_Baud Function
Example

Get_Baud([int type]);
The get_baud function determines the baud rate in use by the current connect device (300 through
115,200).

Argument Description
int type If 1, the DCE is

returned.    If 0 or no
parameter is passed,
the DTE is returned.

Return Value
An integer value that represents the
currently connected baud rate.    Values
range from 300 to 115,200, or -1 if the
current port is invalid..

See also

Get_Parity, Get_DataB, Get_StopB, Get_Port

Get_Baud Example

prints("The current baud rate is ");
printn(get_baud());
prints("");

Get_DataB Function
Get_DataB();
The get_datab function determines the data bits setting in use on the current connect device.

Return Value
The current data bits setting, either 7 or
8, or -1 if the current port is invalid..

See also

Get_Baud, Get_Parity, Get_StopB, Get_Port

GetEnv Function
Example

GetEnv(str varname, str target);
The getenv function may be used to access the DOS Environment and get the value assigned to an
Environment Variable.

Argument Description
str varname The name of the

environment variable
to retrieve.    Case is
not significant.

str target The string variable to
copy the environment
variable into.

Return Value
A non-zero (TRUE) value is returned if
the function is successful, otherwise a
zero (FALSE) values is returned (if the
environment variable didnt exist).

GetEnv Example

// Get and print whatever is assigned to the TELIX env. variable
str value[64];
if (getenv("TELIX", value)) // if env. variable exists
 prints(value); // print value

Get_Parity Function
Get_Parity();
The get_parity function returns an integer value which represents the current parity setting in use on the
current connect device.

Return Value
-1 Invalid port
0 No parity
1 Even parity
2 Odd parity
3 Mark parity
4 Space parity

See also

Get_Baud, Get_DataB, Get_StopB, Get_Port

Get_Port Function
Example

Get_Port();
The get_port function determines the number of the current communications port being used.

Return Value
The number of the communications port
in use, from 1 to 4, or -1 if the current
port is invalid.

See also

Get_Baud, Get_DataB, Get_Parity, Get_StopB

Get_Port Example

prints("Currently using COM");
printn(get_port());
prints("");

Get_StopB Function
Get_StopB();
The get_stopb function determines the stop bits setting in use on the current connect device.

Return Value
The current stop bits settings, either 1
or 2, or -1 if the current port is invalid..

See also

Get_Baud, Get_DataB, Get_Parity, Get_Port

GetS Function
Example

GetS(str buffer, int max);
The gets function allows the user to enter a string with editing capabilities.    String entry is complete when
the user presses Enter.    The user may press Esc to abort string entry, in which case the resulting string
will be empty ("").

Argument Description
str buffer The variable to store

the entered string.
int max The maximum number

of characters that may
be entered.

Return Value
The number of characters entered by
the user are returned.    If the user
pressed Esc to abort string entry, a
value of -1 is returned.    If the cursor
has been moved out of the terminal
window (with the GotoXY function, for
instance), a value of -2 is returned
immediately.

See also

GetSXY

GetS Example

int n;
str password[8];
printsc("Enter a password? ");
n = gets(password, 8);

GetSXY Function
Example

GetSXY(str buffer, int max, int x, int y, int color);
The getsxy function is similar to the gets function, but the screen location of string entry may be specified,
as well as a color attribute.    String entry is complete when the user presses Enter.    The user may press
Esc to abort string entry, in which case the resulting string will be empty ("").

Argument Description
str buffer The variable to store

the entered string.
int max The maximum number

of characters that may
be entered.

int x The column where
entry will occur.

int y The line where entry
will occur.

int color The color    attribute of
the editing area.

Return Value
The number of characters entered by
the user are returned.    If the user
pressed Esc to abort string entry, a
value of -1 is returned.    If the values of
x,y is not a valid screen location, a
value of -2 is returned immediately.

See also

GetS

GetSXY Example

int n;
str filename[64] = "C:\TELIX\TELIX.EXE";
// allow user to enter filename in black on white
// at current cursor position
n = getsxy(filename, 64, getx(), gety(), 112);

GetTermHeight Function
Example

GetTermHeight();
The gettermheight function determines the number of lines available on the terminal screen.    This
function returns the absolute number of lines without regard to whether they are visible or not (if the
terminal window is sized so that scrollbars are required to view all of it).    Note that SALT functions that
take screen coordinates as parameters use zero based coordinates.    See the example for further
information.

Return Value
An integer value representing the
number of lines available;    24, 25 or
50.

See also

GetTermWidth, GetX, GetY

GetTermHeight Example

// Draw a box that covers the entire screen.
// Note that both gettermwidth and gettermheight have 1 subtracted
// from them because screen coordinates are zero based.
box(0, 0, gettermwidth()-1, gettermheight()-1, 1, 0, 30);

GetTermWidth Function
Example

GetTermWidth();
The gettermwidth function determines the number of columns available on the terminal screen.    This
function returns the absolute number of columns without regard to whether they are visible or not (if the
terminal window is sized so that scrollbars are required to view all of it).    Note that SALT functions that
take screen coordinates as parameters use zero based coordinates.    See the example for further
information.

Return Value
An integer value representing the
number of lines available, either 80 or
132.

See also

GetTermHeight, GetX, GetY

GetTermWidth Example

// Draw a box that covers the entire screen.
// Note that both gettermwidth and gettermheight have 1 subtracted
// from them because screen coordinates are zero based.
box(0, 0, gettermwidth()-1, gettermheight()-1, 1, 0, 30);

GetX Function
GetX();
The getx function determines the current column (horizontal x axis) position of the cursor on the screen.   
This function returns the absolute number of columns without regard to whether they are visible or not (if
the terminal window is sized so that scrollbars are required to view all of it).

Return Value
Returned values will range from 0 for
the leftmost column to 131 for the
rightmost column.

See also

GetY, GotoXY

GetY Function
GetY();
The gety function determines the current row (vertical y axis) position of the cursor on the screen.    This
function returns the absolute number of columns without regard to whether they are visible or not (if the
terminal window is sized so that scrollbars are required to view all of it).

Return Value
Returned values range from 0 for the
upper edge of the screen to 49 for the
lower edge.

See also

GetX, GotoXY

GotoXY Function
Example

GotoXY(int xpos, int ypos);
The gotoxy function positions the cursor at the given screen coordinates.    Note that 0,0 is the upper left
corner.    On a 80x25 text screen, the lower right corner would be 79,24.    If the given coordinates is a
location that is not on screen, output will be suspended until it is placed back on screen.    If output is
suspended, processing of the communications port does continue, but there will be indication of it in the
terminal window.    Valid screen ranges can be determined using the GetTermHeight and GetTermWidth
functions.

Argument Description
int xpos The column at which

the cursor should be
placed.

int ypos The line at which the
cursor should be
placed.

Return Value
A zero is always returned.

See also

GetX, GetY, GetTermHeight, GetTermWidth

GotoXY Example

// go to the top left corner
gotoxy(0, 0);
// go to the bottom right corner
gotoxy(gettermwidth()-1, gettermheight()-1);

Hangup Function
Hangup();
The hangup function tries to hang-up the modem, exactly as if the user had selected Hangup from the
Actions menu or pressed Alt-H while in terminal mode.    This is accomplished by first dropping (turning
off) a signal called the DTR line, and if that is unsuccessful, sending the hang-up string defined in the
device's configuration.

Return Value
A non-zero (TRUE) value is returned if
the hang-up is    successful, otherwise a
zero (FALSE) value is returned.

HelpScreen Function
HelpScreen();
The helpscreen function displays the Telix for Windows help file.

Return Value
A value of zero is always returned.

InKey Function
Example

InKey();
The inkey function gets a character from the keyboard if one is ready, but does not wait for a key to be
pressed.    Also, inkey returns extended key code values which are not part of the ASCII character set (for
example, the code for Alt-D which is 8192).    These values are described in the Telix for Windows manual
Appendix and in the Extended Key Scan Code section of this help file.

Return Value
The first character in the keyboard
buffer, or a value of 0 if the keyboard
buffer is empty.

See also

InKeyW

InKey Example

int chr;
prints("Press any key to continue...");
chr = 0;
while (!chr)
 chr = inkey();

InKeyW Function
Example

InKeyW();
The inkeyw function gets the next available character from the keyboard, or waits for a key to be pressed
if the keyboard buffer is empty.    Also, inkeyw returns extended key code values which are not part of the
ASCII character set (for example, the code for Alt-D which is 8192).    These values are described in the
Telix for Windows manual Appendix and in the Extended Key Scan Code section of this help file.

Return Value
The first character to become available
in the keyboard buffer.

See also

InKey

InKeyW Example

int chr;
prints("Press any key to continue...");
chr = inkeyw();

InputBox Function
Example

InputBox(str title, str prompt, str buff);
The inputbox function uses a stock input dialog box to acquire text input from the user.    The dialog
contains a standard Windows edit control for text input, and an Ok and Cancel button for completing
input.

Argument Description
str title The caption to be

displayed on the input
boxs title bar.

str prompt The text displayed
above the edit field.    It
should be used to
explain what input is
being requested.

str buff The string variable to
hold the users input.   
If this variable
contains a string when
the inputbox function
is called, it will be
placed in the edit field
initially.

Return Value
A value of 1 is returned if the Ok button
was pressed, otherwise a value of 2 is
returned.    If Cancel is selected, the buff
variable will not be updated.

See also

Status_Wind, MsgBox

InputBox Example

#CONST idOK 1
#CONST idCancel 2
#CONST mbOk 0
#CONST mbIconStop 16
int retval;
str buf[80] = "John Doe";
if (inputbox("Query", "Enter your full name:", buf) == idOK)
 {
 printsc("Entered Name = ");
 prints(buf);
 }
else
 // note that buf would still contain "John Doe" at this point.
 prints("Entry was aborted.");
// The following input box will be displayed until Cancel was not
// chosen and the entered string is not empty.
while ((inputbox("Query", "Enter your full name:", buf) == idCancel) ||
strlen(buf) == 0)
 msgbox("Error", "You must enter your name.", mbOK | mbIconStop);
printsc("Entered Name = ");
prints(buf);

InsChrs Function
Example

InsChrs(str source, str target, int pos, int num);
The inschrs function is used to insert characters from one string into another at a specific position, shifting
existing characters to the right.    If there is not enough room for shifted characters, they will be lost.

Argument Description
str source The string to insert

characters from.
str target The string to insert

characters into.
int pos The position in the

target string to insert
characters.    Note that
SALT strings begin at
0, not 1 as some
languages.

int num The number of
characters to insert
from the source string.

Return Value
A zero is always returned.

See also

CopyStr, CopyChrs

InsChrs Example

str test[24] = "Good-bye", test2[10] = "Hello ";
// add "Hello" to the front of the existing string
inschrs(test2, test, 0, strlen(test2));

IsAlNum Function
IsAlNum(int c);
The isalnum function tests an integer value to determine if it is a letter (A-Z, a-z) or numeric (0-9) value.   
isalnum will only give valid results for integer values in the ASCII character set; that is, values for which
isascii is true.    Note that the parameter may be specified as either the ASCII integer value, or as a
character enclosed in single quotes (' ').

Argument Description
int c The value to be

tested.

Return Value
A non-zero (TRUE) value if the
conditions are met, or a zero (FALSE) if
it is not.

See also

IsAlpha, IsAscii, IsCntrl, IsDigit, IsLower, IsUpper

IsAlpha Function
IsAlpha(int c);
The isalpha function tests an integer value to determine if the value is a letter (A-Z, a-z) value.    isalpha
will only give valid results for integer values in the ASCII character set; that is, values for which isascii is
true.    Note that the parameter may be specified as either the ASCII integer value, or as a character
enclosed in single quotes (' ').

Argument Description
Int c The value to be

tested.

Return Value
A non-zero (TRUE) value if the
conditions are met, or a zero (FALSE) if
it is not.

See also

IsAlNum, IsAscii, IsCntrl, IsDigit, IsLower, IsUpper

IsAscii Function
IsAscii(int c);
The isascii function tests an integer value to determine if it is an ASCII character (0-255).    Note that the
parameter may be specified as either the ASCII integer value, or as a character enclosed in single
quotes (' ').

Argument Description
int c The value to be

tested.

Return Value
A non-zero (TRUE) value if the
conditions are met, or a zero (FALSE) if
it is not.

See also

IsAlNum, IsAlpha, IsCntrl, IsDigit, IsLower, IsUpper

IsCntrl Function
IsCntrl(int c);
The iscntrl function tests an integer value to determine if the value is a control character (0-31, 127).   
iscntrl will only give valid results for integer values in the ASCII character set; that is, values for which
isascii is true.    Note that the parameter may be specified as either the ASCII integer value, or as a
character enclosed in single quotes (' ').

Argument Description
int c The value to be

tested.

Return Value
A non-zero (TRUE) value if the
conditions are met, or a zero (FALSE) if
it is not.

See also

IsAlNum, IsAlpha, IsAscii, IsDigit, IsLower, IsUpper

IsDigit Function
IsDigit(int c);
The isdigit function tests an integer value to determine if it is a digit (0-9).    isdigit will only give valid
results for integer values in the ASCII character set; that is, values for which isascii is true.    Note that the
parameter may be specified as either the ASCII integer value, or as a character enclosed in single
quotes (' ').

Argument Description
int c The value to be

tested.

Return Value
A non-zero (TRUE) value if the
conditions are met, or a zero (FALSE) if
it is not.

See also

IsAlNum, IsAlpha, IsAscii, IsCntrl, IsLower, IsUpper

IsLower Function
IsLower(int c);
The islower function tests an integer value to determine if the value is a lower case letter (a-z).    islower
will only give valid results for integer values in the ASCII character set; that is, values for which isascii is
true.    Note that the parameter may be specified as either the ASCII integer value, or as a character
enclosed in single quotes (' ').

Argument Description
int c The value to be

tested.

Return Value
A non-zero (TRUE) value if the
conditions are met, or a zero (FALSE) if
it is not.

See also

IsAlNum, IsAlpha, IsAscii, IsCntrl, IsDigit, IsUpper

IsUpper Function
IsUpper(int c);
The isupper function tests an integer value to determine if the value is an upper case letter (A-Z).   
isupper will only give valid results for integer values in the ASCII character set; that is, values for which
isascii is true.    Note that the parameter may be specified as either the ASCII integer value, or as a
character enclosed in single quotes (' ').

Argument Description
int c The value to be

tested.

Return Value
A non-zero (TRUE) value if the
conditions are met, or a zero (FALSE) if
it is not.

See also

IsAlNum, IsAlpha, IsAscii, IsCntrl, IsDigit, IsLower

Is_Loaded Function
Example

Is_Loaded(str filename);
The is_loaded function is used to determine if a SALT script is currently loaded in memory.    The script
can be in memory if it was explicitly loaded with the load_scr function, or is still in memory because it was
previously executed and did not finish.

Argument Description
str filename The filename of the

script to check.    If it
does not include an
extension, .SLC is
automatically
appended.

Return Value
A non-zero (TRUE) value is returned if
the script file is in memory, otherwise a
zero (FALSE) value is returned.

See also

Load_Scr, Unload_Scr

Is_Loaded Example

if (!is_loaded("TESTSCR")) // make sure script is in memory
 load_scr("TESTSCR");

ItoS Function
Example

ItoS(int value, str buff);
The itos function converts an integer value to a string representation of the number.

Argument Description
int value The number to be

converted.
str buff The variable to place

the resulting string in.

Return Value
The resulting string (buff) is returned.

See also

stoi

ItoS Example

int chr;
str s[16];
chr = inkeyw(); // get a user keystroke
itos(chr, s); // and print out ASCII value of character
prints(s);

KeyGet Function
Example

KeyGet(int key, int table, str buffer);
The keyget function is used to retrieve the macro text that is assigned to a key.

Argument Description
int key An integer

representing the key
as described in the
Telix for Windows
manual Appendix and
in the Extended Key
Scan Code    section of
this help file).

Int table This parameter does
not apply to Telix for
Windows, and it is
included only for
compatibility with Telix
for DOS.    If a value is
specified, it will be
ignored.

str buffer Any macro text
assigned to the key
will be placed in this
string.

Return Value
A zero is always returned.

See also

KeySet, KeyLoad, KeySave

KeyGet Example

str s[100];
prints("Text currently assigned to the F1 key in user table is:");
keyget(0x3b00, 0, s);
prints(s);

KeyLoad Function
Example

KeyLoad(str filename, int table);
The keyload function is used to load a keyboard macro definition file into Telix.

Argument Description
str filename The filename of the

keyboard definition
file.    If no extension is
give, .KBD is
assumed.

int table This parameter does
not apply to Telix for
Windows, and it is
included only for
compatibility with Telix
for DOS.

Return Value
A value of -1 is returned if there is a
problem loading the key file, otherwise
a non-zero (TRUE) value is returned.

See also

KeySave, KeyGet, KeySet

KeyLoad Example

if keyload("SPECIAL", 0)
 prints("Keyboard file loaded.");
else
 prints("Keyboard file could not be loaded.");

KeySave Function
KeySave(str filename, int table);
The keysave function is used to save the current macro key definitions to a disk file.

Argument Description
str filename The filename of the

keyboard definition
file.    If no extension is
give, .KBD is
assumed.

int table This parameter does
not apply to Telix for
Windows, and it is
included only for
compatibility with Telix
for DOS.

Return Value
A value of -1 is returned if there is an
error writing to the file, otherwise a non-
zero (TRUE) value is returned.

See also

KeyLoad, KeyGet, KeySet

KeySet Function
Example

KeySet(int key, int table, str text);
The keyset function is used to assign keyboard macro text to a key.

Argument Description
int key An integer

representing the key
as described in the
Telix for Windows
manual Appendix and
in the Extended Key
Scan Code      section
of this help file).

int table This parameter does
not apply to Telix for
Windows, and it is
included only for
compatibility with Telix
for DOS.

str text The macro text to be
assigned to the key.

Return Value
A zero is always returned.

See also

KeyGet, KeyLoad, KeySave

KeySet Example

// Assign a name to the F1 key in the user table
// Note that if the current keyboard macro table
// already has a definition for that key it will
// be replaced by this one.
keyset((0x3b00, 0, "Joe Smith^M");

LoadFon Function
LoadFon(str filename);
The loadfon function loads a PhoneBook into Telix for Windows.

Argument Description
str filename The complete filename

of the PhoneBook to
load, including any
extension (e.g. .FBK),
as well as the disk
drive and directory if
the file is not in the
current directory.

Return Value
A non-zero (TRUE) value is returned if
the dialing directory file is successfully
loaded.    If some sort of error occurs
(file does not exist, file reading error,
etc.) a zero (FALSE) value is returned.

Load_Scr Function
Example

Load_Scr(str filename);
When a script is executed, either by the user manually running it, or from within another script, it is usually
loaded from disk.    The load_scr function is used to load a script into memory ahead of time, providing a
savings in time when the script must be run repeatedly.    After a script is loaded in this manner, running it
with the calld function makes a copy of the script in memory instead of loading it from disk.    The script
will remain in memory until released by the Unload_Scr function.

Argument Description
str filename The filename of the

script to load.    If no
extension is
given, .SLC is
assumed.

Return Value
If there is an error loading the script file
(it is not found or there is not enough
memory), a value of -1 is returned.   
Otherwise a non-zero (TRUE) value is
returned.

See also

Unload_Scr, Is_Loaded

Load_Scr Example

int stat;
stat = load_scr("TEST"); // load TEST.SLC

MsgBox Function
Example

MsgBox(str title, str message, int options);
The msgbox function creates, displays, and operates a message-box window.    The message box
contains the specified message and title, plus any combination of predefined icons and push buttons
described below.

Argument Description
str title The caption to be

displayed on the
message boxs title
bar.

str message The message to be
displayed.    The
Control-M (ASCII #13)
character may be
embedded to indicate
line breaks.

int options A combination of
options, listed in the
table below, that
specifies the contents
and behavior of the
dialog.    The options
are combined using
the OR (|) operator.   
See the Example for
more information.

Option Description
0 Ok button.
1 Ok and Cancel button.
2 Abort, Retry and

Ignore button.
3 Yes, No and Cancel

button.
4 Yes and No button.
5 Retry and Cancel

button.
16 Hand icon.
32 Question icon.
48 Exclamation icon.
64 Information icon.
256 Second button

displayed is the
default.

 512 Third button displayed
is the default.

Return Value Description
1 Ok button was

selected.
2 Cancel button was

selected.
3 Abort button was

selected.
4 Retry button was

selected.
5 Ignore button was

selected.
6 Yes button was

selected.
7 No button was

selected.

See also

Status_Wind, InputBox

MsgBox Example

// Button constants.
#CONST mbOk 0
#CONST mbOkCancel 1
#CONST mbAbortRetryIgnore 2
#CONST mbYesNoCancel 3
#CONST mbYesNo 4
#CONST mbRetryCancel 5

// Default Button constants.
#CONST mbDefButton1 0
#CONST mbDefButton2 256
#CONST mbDefButton3 512
// Info bitmap constants.
#CONST mbIconHand 16
#CONST mbIconStop 16
#CONST mbIconQuestion 32
#CONST mbIconExclamation 48
#CONST mbIconAsterisk 64
#CONST mbIconInformation 64
// Return value constants.
#CONST idOk 1
#CONST idCancel 2
#CONST idAbort 3
#CONST idRetry 4
#CONST idIgnore 5
#CONST idYes 6
#CONST idNo 7
int retval;
// Display a simple message with an OK button.
MsgBox("Error:", "Telix was unable to establish a connection.", mbOK);
// Display a more complex message and
// take appropriate action based on response.
retval = MsgBox("Error:", "Telix was unable to establish a connection.",
mbAbortRetryIgnore | mbDefButton2 | mbIconStop);
switch (retval)
 {
 case idIgnore:
 break; // take no action.
 case idRetry:
 // code to attempt reconnection.
 break;
 case idAbort:
 // code to abort attempt.
 break;
 }

NewDir Function
Example

NewDir(str directory);
The newdir function is used to change the current drive and/or directory.

Argument Description
str directory The drive and/or

directory to change to.

Return Value
A non-zero (TRUE) value is returned if
the function is successful, otherwise a
zero (FALSE) value is returned (if the
driver or directory is illegal or doesn't
exist).

See also

Dos, Run

NewDir Example

newdir("C:\TFW\FONBOOKS");
loadfon("MYPHONE.FBK");

NewLine Function
NewLine();
The newline function is used to send a carriage return and line feed to the terminal.

Return Value
A zero is always returned.

See also

CNewLine

NumConnectDevices Function
Example

NumConnectDevices();
The numconnectdevices is used to determine how many connect devices the user has installed.   
Connect devices are installed and configured from Telix's Configure menu option, Connect Devices.

Return Value
The number of connect devices is
returned.

See also

ConnectDeviceName, Set_ConnectDevice

NumConnectDevices Example

int num;
str buff[30];
for (num = 1; num <= numconnectdevices; ++num)
 prints(connectdevicename(num, buff));

PlayWave Function
Example

PlayWave(str filename);
The playwave function plays a waveform sound from a file or an entry in the [SOUNDS] section of the
WIN.INI file.

Argument Description
str filename A complete filename

or an entry in the
[SOUNDS] section of
WIN.INI file.    If the
sound can't be found,
the default sound
specified by the
SystemDefault entry in
the [SOUNDS] section
of WIN.INI is played.   
If there is no
SystemDefault entry
or if the default sound
can't be found, the
function makes no
sound.

Return Value
A non-zero (TRUE) value is returned if
the function is successful, otherwise a
zero (FALSE) value is returned (if
filename was not a valid wave file or
entry in the [sounds] section of
WIN.INI).

See also

Alarm, Tone, _alarm_on, _sound_on

PlayWave Example

playwave("c:\win\chimes.wav"); // Plays the specified file
playwave("SystemHand"); // Plays the Windows Critical Stop sound

PrintC Function
Example

PrintC(int chr);
The printc function prints a character represented by an ASCII value to the terminal screen.

Argument Description
int chr The ASCII value of the

character to be
printed.

Return Value
The value to be printed is returned.

See also

PrintC_Trm, PrintN, PrintN_Trm, PrintS, PrintS_Trm, PrintSC, PrintSC_Trm

PrintC Example

printc('A');
printc(7); // print ASCII value 7 (BELL sound)
printc(inkeyw()); // print user keypress

PrintC_Trm Function
Example

PrintC_Trm(int chr);
The printc_trm function prints the character represented by an ASCII value to the terminal screen.    This
function is the same as printc, except that the character passes through the current terminal emulator, so
terminal escape sequences can be used.

Argument Description
int chr The ASCII value of the

character to be
printed.

Return Value
The value to be printed is returned.

See also

PrintC, PrintN, PrintN_Trm, PrintS, PrintS_Trm, PrintSC, PrintSC_Trm

PrintC_Trm Example

printc_trm('A');
printc_trm(7); // print ASCII value 7 (BELL sound)
printc_trm(keyinw()); // print user keypress

Printer Function
Printer(int state);
The printer function is used within a script file to turn the printer log on or off, as if the user had selected
Printer Log from the file menu or pressed the appropriate key in terminal mode.

Argument Description
int state If zero (FALSE), the

printer log will be
turned off.    If non-zero
(TRUE), it will be
turned on.

Return Value
A zero (FALSE) value is returned if the
log cannot be started, otherwise a non-
zero (TRUE) value is returned.

See also

Capture

PrintN Function
Example

PrintN(int num);
The printn function prints an integer number to the screen.    The cursor is not advanced to the beginning
of the next line.

Argument Description
int num The number to be

printed.

Return Value
The value to be printed is returned.

See also

PrintC, PrintC_Trm, PrintN_Trm, PrintS, PrintS_Trm, PrintSC, PrintSC_Trm

PrintN Example

printsc("Current baud rate is ");
printn(get_baud(1));

PrintN_Trm Function
Example

PrintN_Trm(int num);
The printn function prints an integer number to the screen.    The cursor is not advanced to the beginning
of the next line.    printn_trm works in the same manner as printn, except that the number passes through
the current terminal emulator, so terminal escape sequences may be used.

Argument Description
int num The number to be

printed.

Return Value
The value to be printed is returned.

See also

PrintC, PrintC_Trm, PrintN, PrintS, PrintS_Trm, PrintSC, PrintSC_Trm

PrintN_Trm Example

printsc("Current baud rate is ");
printn_trm(get_baud(1));

PrintS Function
Example

PrintS(str outstr);
The prints function prints a string at the current cursor position on the screen, followed by a Carriage
Return and Line Feed (which advances the cursor at the beginning of the next line).

Argument Description
str outstr The string to be

printed.

Return Value
A zero is always returned.

See also

PrintC, PrintC_Trm, PrintN, PrintN_Trm, PrintS_Trm, PrintSC, PrintSC_Trm

PrintS Example

// Print Hello at the current position and advance to beginning of next line.
prints("Hello");
// Print Goodbye on the line after the one Hello was printed on.
prints("Goodbye");

PrintS_Trm Function
Example

PrintS_Trm(str outstr);
The prints function prints a string at the current cursor position on the screen, followed by a Carriage
Return and Line Feed (which advances the cursor at the beginning of the next line).    prints_trm works the
same as prints, except that the string passes through the current terminal emulator, so terminal escape
sequences may be used.

Argument Description
str outstr The string to be

printed.

Return Value
A zero is always returned.

See also

PrintC, PrintC_Trm, PrintN, PrintN_Trm, PrintS, PrintSC, PrintSC_Trm

PrintS_Trm Example

// Print Hello at current position and advance to next line.
prints_trm("Hello");
// Print Hello at current position and advance two lines.
prints_trm("Hello^M^J");
// go to top left corner in VT102 emulation and print Hello.
prints_trm("^[[H Hello");

PrintSC Function
Example

PrintSC(str outstr);
The printsc function prints a string at the current cursor position on the screen, but does not advance the
cursor to the next line, hence the 'c', which stands for continuous.

Argument Description
str outstr The string to be

printed.

Return Value
A zero is always returned.

See also

PrintC, PrintC_Trm, PrintN, PrintN_Trm, PrintS, PrintS_Trm, PrintSC_Trm

PrintSC Example

// The following will print "Hello and Goodbye" at the current position.
printsc("Hello");
printsc(" and ");
printsc("Goodbye");

PrintSC_Trm Function
Example

PrintSC_Trm(str outstr);
The printsc_trm function is similar to printsc, except that the string passes through the current terminal
emulator, so terminal escape sequences may be used.

Argument Description
str outstr The string to be

printed.

Return Value
A zero is always returned.

See also

PrintC, PrintC_Trm, PrintN, PrintN_Trm, PrintS, PrintS_Trm, PrintSC

PrintSC_Trm Example

// go to top left corner in VT102 emulation and print "Yello".
printsc_trm("^[[H"); // Sequence for top left corner.
printsc_trm("Hello"); // Print Hello.
printsc_trm("^[[H"); // Back to top left again.
printsc_trm("Y"); // Print Y where H was.

PStrA Function
Example

PStrA(str s, int color);
The pstra (Print STRing with color Attribute) function is used to print a string on the screen, similar to the
prints and printsc functions.    This function is much faster however, and should be used when speed is
important.    The pstra function also allows a color to be specified for the text.

Argument Description
str s The string to be

printed.
int color The color    of the

string to be printed.

Return Value
A zero is always returned.

See also

PrintS, PrintSC, PStrAXY

PStrA Example

pstra("Enter name:", 112);      // print in black on white.

PStrAXY Function
Example

PStrAXY(str s, int x, int y, int color);
The pstraxy (Print STRing with color Attribute at X,Y) function is used to print a string to the screen,
similar to the prints and printsc functions.    This function is much faster however, and should be used
when speed is important. The pstraxy function also allows a color to be specified for the text, as well as a
position on the terminal screen.

Argument Description
str s The string to be

printed.
int x The column to print

the string at.
int y The line to print the

string at.
int color The color    of the

string to be printed.

Return Value
A zero is always returned.

See also

PrintS, PrintSC, PStrA

PStrAXY Example

pstraxy("Enter name:", 10, 10, 30);      // print at 10, 10 in yellow on blue.

Random Function
Random(int range);
The random function returns a random number within a specified range.

Argument Description
int range The maximum number

of the range plus 1.

Return Value
A number in the range 0 <= X < range.

Receive Function
Example

Receive(int protocol, str name);
The receive function is used to receive (download) one or more files from another system.    If a download
directory has been defined in the Filenames & Paths configuration, received files will be placed there,
unless the name string explicitly includes a path to another drive and/or directory.

Argument Description
Int protocol The protocol to

receive the file(s) with. 
See table below.

str name The name for the
file(s) being received.   
For protocols which
pass filenames, such
as ZModem, YModem
(batch), and others,
this should be an
empty string ("").

Protocol Description
'A' ASCII
'X' XModem
'1' XModem-1k
'G' XModem-1k-G
'Y' YModem
'E' YModem-G
'Z' ZModem

Return Value
A value of -1 is returned if the transfer
was aborted, -2 if the carrier
(connection) was lost, or 0 if successful.

See also

Send, _down_dir

Receive Example

int result;
result = receive('X', "TEST.EXE"); // Download using Xmodem to TEST.EXE
if (result < 0)
 prints("File transfer failed!");

Redial Function
Example

Redial(str dialstr, int maxtries, int no_link);

Redial is used much the same as the dial function.    It redials the previously entered dialing queue,
optionally adding new numbers to it, and it allows control over the number of attempts and whether or not
to execute linked scripts.

Argument Description
str dialstr A string containing the entries to be

added to the dialing queue.    Entries
can be specified as the PhoneBook
entry number, the PhoneBook entry
name, or partial name, enclosed in
pipe (|) symbols, or a manually
entered number prefaced by an 'm'. 
If an actual pipe symbol is required,
use a double pipe (||).    If dialstr is
empty (""), then no entries are
added to the queue before dialing.

int maxtries The maximum number of dialing
attempts to make.    This is the total
number of attempts, regardless of
the number of entries being dialed.   
For instance, if three entries are to
be dialed and maxtries is 6, each
entry will be attempted twice.    If
maxtries is 0, dialing will continue
until a connection is established.

int no_link If non-zero (TRUE) and the entry
connected has a linked script file,
that script will NOT be executed.    If
no_link is zero (FALSE), linked
scripts will be executed.

Return Value
If a connection is established, the redial function
returns the entry number that was connected to (or 1
if a manual number was dialed).    If no connection
was established, 0 is returned.    If dialstr is incorrectly
formatted, -1 is returned.

When a connection is successfully established, several items of information regarding the entry are
placed in System Variables.    These variables are fully described in the _entry_info section.

See also

Dial, _entry_enum, _entry_name

Redial Example

int stat;
str number_list[255];
// The first dial will dial entry #10, the first entry with "delta" in it,
// entry #15, and My Pipe | BBS until a connection has been established,
// but do not execute any linked scripts.
if (dial("10 |delta| 15 |My Pipe || BBS|", 0, 1) > 0)
 connected_func();
while (redial("", 0, 1) > 0)
 connected_func();

Run Function
Example

Run(str filename, str comline, int mode);
The run function is used to execute another program.    Ensure that if you run a program that expects user
input, you are on hand to provide it.    This function is similar to the dos function, but it can launch both
Windows and DOS programs.    Therefore, it is preferable unless a DOS batch file has to be run, or an
internal DOS command must be executed, in which case the dos function has to be used.

Argument Description
str filename The filename of the

program to launch.    It
must either be in the
current directory, the
path, or must include
the full path to the file
(i.e., specify the drive
and/or directory).

str comline Parameters to be
passed to the called
program.

Int mode This parameter does
not apply to Telix for
Windows, and it is
included only for
compatibility with Telix
for DOS.    If a value is
given, it will be
ignored.

Return Value
A -1 is returned if the file can not be
launched (because it can not be found
or there is not enough memory),
otherwise 0 is returned.

See also

Dos, DosFunction

Run Example

// Launch Windows' NotePad program with CONFIG.SYS loaded.
run("NOTEPAD.EXE", "C:\CONFIG.SYS", 0);

Scroll Function
Example

Scroll(int x, int y, int x2, int y2, int lines, int color);
The scroll function is used to scroll or clear a region of the screen.

Argument Description
int x The left column of the

area.
int y The upper row of the

area.
int x2 The right column of

the area.
int y2 The lower row of the

area.
int lines The number of lines to

scroll the area.    If
positive, the area is
scrolled up.    If
negative, the area is
scrolled down.    If
zero, the entire region
is cleared.

int color The color of empty
lines scrolled into the
area.

Return Value
A zero is always returned.

See also

Box

Scroll Example

// scroll the entire screen up 10 lines with a color of yellow on blue.
scroll(0, 0, gettermwidth()-1, gettermheight()-1, 10, 30);

ScriptVersion Function
ScriptVersion();
The scriptversion function is used to determine the version of the Telix script compiler.

Return Value
If the compiler is Telix for DOS v3.22 or
below (SALT), a 0 is returned.    If it is
Telix for Windows v1.00 or 100% TFW
compatible version of Telix for DOS
(SALT II), a 1 is returned.

See also

TelixForWindows, TelixVersion, SALTII Symbol, WINDOWS Symbol

Send Function
Example

Send(int protocol, str filename);
The send function is used to send (upload) one or more files from another system.    If an upload directory
has been defined in the Filenames & Paths configuration, files will be sent from there unless the filename
string explicitly includes a path to another drive and/or directory..

Argument Description
int protocol The protocol to send

the file(s) with.    See
table below.

str name The name of the file(s)
to be sent.    It may
include the DOS
wildcard characters *
and ?, in which case
all matching files will
be sent, however the
protocol used must be
capable of sending
more than one file at a
time, e.g. Zmodem,
Ymodem, etc.

Protocol Description
'A' ASCII
'X' XModem
'1' XModem-1k
'G' XModem-1k-G
'Y' YModem
'E' YModem-G
'Z' ZModem

Return Value
A value of -1 is returned if the transfer
was aborted, -2 if the carrier
(connection) was lost, -3 if there were
no files to upload, or 0 if successful.

See also

Receive, _up_dir

Send Example

int result;
// Upload TEST.EXE from the upload directory and C:\CONFIG.SYS using YModem.
result = send('Y', "TEST.EXE C:\CONFIG.SYS");
if (result < 0)
 prints("File transfer failed!");

Send_Brk Function
Send_Brk(int duration);
The send_brk function sends a sustained break signal over the connect device for a period of time.

Argument Description
int duration The amount of time to

send the break signal
in tenths of seconds.

Return Value
A zero is always returned.

Set_ConnectDevice Function
Set_ConnectDevice(str devicestr);
The set_connectdevice function is used to select a device for communications use.    If the requested
device can not be found, the connect device is not changed.

Argument Description
str devicestr The complete name of

an existing connect
device as entered in
the Connect Device
Manager.

Return Value
A value of 1 (TRUE) is returned if
successful, otherwise a 0 (FALSE) is
returned.

See also

ConnectDeviceName, NumConnectDevices, Set_CParams

Set_CParams Function
Example

Set_CParams(int baud, int parity, int data, int stop);
The set_cparams function is used to set the communications parameters in use on the current connect
device.

Argument Description
int baud Baud rate to use.   

Legal values are 300,
1200, 2400, 4800,
9600, 19200, 38400,
57600, 115200.

int parity Parity to use.    Legal
values are 0 for None,
1 for Odd, 2 for Even,
3 for Mark, and 4 for
Space.

int data Data bits to use.   
Legal values are 7 and
8.

int stop Stop bits to use.   
Legal values are 1 and
2.

Return Value
If all the settings are legal values, a
non-zero (TRUE) value is returned,
otherwise a value of -1 is returned.

See also

Set_ConnectDevice

Set_CParams Example

// Set 2400 baud, No parity, 8 data bits and 1 stop bit.
set_cparams(2400, 0, 8, 1);
// Change to 9600 baud without disturbing the parity, data or stop bits.
set_cparams(9600, get_parity(), get_datab(), get_stopb());

Set_DefProt Function
Set_DefProt(int protocol);
The set_defprot function is used to set the default file transfer protocol presented to the user when a file
transfer is requested.

Argument Description
int protocol Default protocol.    See

following table.

Protocol Description
'A' ASCII
'X' XModem
'1' XModem-1k
'G' XModem-1k-G
'Y' YModem
'E' YModem-G
'Z' ZModem

Return Value
A zero is always returned.

See also

Receive, Send

Set_Port Function
Set_Port(int port);
The set_port function is not used in Telix for Windows, and it is included only for compatibility with Telix for
DOS.    The Set_ConnectDevice function should be used instead.

See also

Set_ConnectDevice, Set_cParams

Set_Terminal Function
Set_Terminal(str terminal_name);
The set_terminal function is used to change terminal emulation.

Argument Description
str
terminal_nam
e

The terminal type to be
used.    Legal values are: 
"TTY", "ANSI-BBS",
"ANSI", "VT220",
"VT102", "VT100",
"VT52", "AVATAR", and
"RIP".

Return Value
A value of -1 is returned if there is a
problem switching to the indicated terminal
emulator, otherwise a non-zero (TRUE)
value is returned.

SetChr Function
Example

SetChr(str buf, int pos, int c);
The setchr function replaces a character at a specific position in a string.

Argument Description
str buf The string to place the

character in.
int pos The position in the

string to place the
character.    Any
characters at this
position will be
overwritten.

int c The character to place
in the string.

Return Value
The integer value of the character to be
set is returned.

See also

SetChrs, SubChr

SetChr Example

int i;
str s[100];
for (i = 0; i < 10; ++i) // set first 10 characters to 'A'
 setchr(s, i, 'A');

SetChrs Function
Example

SetChrs(str buf, int pos, int c, int count);
The setchrs function is used to set a range of characters in a string to the same value.

Argument Description
str buf The string to place the

characters in.
int pos The position in the

string to start placing
characters.    Any
existing characters
starting at this position
will be overwritten.

int c The character to place
in the string.

int count The number of
characters to be set.

Return Value
A zero is always returned.

See also

SetChr, SubChrs

SetChrs Example

str s[100];
// zero out an entire string
setchrs(s, 0, 0, strmaxlen(s));
// set the first ten characters to 'A'
setchrs(s, 0, 'A', 10);

Show_Directory Function
Show_Directory(str filespec, int cecho, int carrier);
The Show_Directory function is not used in Telix for Windows, and it is included only for compatibility with
Telix for DOS.

Status_Wind Function
Example

Status_Wind(str message, int duration);
The status_wind function is used to display a message in a pop up window.    The window displayed
includes an OK button, which the user can press to remove the window, and has room for up to four lines
of centered text.

Argument Description
str message The message to be

displayed.    The
Control-M (ASCII #13)
character may be
embedded to indicate
line breaks.

int duration The amount of time to
display the message
in tenths of seconds.

Return Value
A zero is always returned.

See also

MsgBox, InputBox, Box, PStrA, PStrAXY

Status_Wind Example

str msg[100] = "This is line 1.;This is line 2.;This is line3.;This is line
4."
int x;
// Display window for 3 seconds.
status_wind("This is a simple status message", 30);
// Using the string above, replace all semicolons with ASCII 13 (Carriage
Return).
x = strchr(msg, ';', 0);
while (x != -1)
 {
 setchr(msg, x, 13);
 x = strchr(msg, ';', x);
 }
// Now that Carriage Returns are in place, the status window will display
// the text on 4 separate lines.
status_wind(msg, 30);

StoI Function
Example

StoI(str s);
The stoi function converts a string to its numeric equivalent.    Processing stops at the first non-digit
character.

Argument Description
str s The string to convert

to a number.

Return Value
The numeric representation of the string
is returned.    If an empty or invalid
string is specified, a value of 0 is
returned.

See also

ItoS

StoI Example

str s[] = "123";
if (stoi(s) == 123)
 prints("This will always be printed!");

StrCat Function
Example

StrCat(str string1, str string2);
The strcat function concatenates, or appends, one string to the other.

Argument Description
str string1 The string to append

to.    If it is not large
enough to hold the
resulting string, only
as many as will fit will
be added.

str string2 The string to be
appended.

Return Value
The target string is returned.

StrCat Example

str s[80] = "hello";
strcat(s, "good-bye");
if (s == "hellogood-bye")
 prints("This will always be printed");

StrChr Function
Example

StrChr(str s, int pos, int c);
The strchr function is used to search for a character within a string.

Argument Description
str s The string to be

searched.
int pos The position in the

string to begin the
search.

int c The character to
search for.

Return Value
If the character is found, its location is
returned, otherwise a value of -1 is
returned.

See also

StrPos, StrPosI

StrChr Example

// Count how many times a certain char occurs in a string
int i, count = 0;
str s[] = "abcabcabcabcabc";
i = -1;
do
 {
 ++i;
 i = strchr(s, i, 'a');
 if (i != -1)
 count = count + 1;
 }
while (i != -1);
printsc("The character 'a' occurs ");
printn(count);
printsc(" times in the string '");
printsc(s);
prints("'.");

StrCmpI Function
Example

StrCmpI(str string1, str string2);
The strcmpi function is used to compare two strings without regard to case.    The strings are compared
character by character until a difference is found or the end of either string is found.

Argument Description
str string1, str
string2

The strings to be
compared.

Return Value
An integer value is returned as follows:

int = 0 The strings are the same.
int < 0 The first string is less than the
second string.
int > 0 The first string is greater than
the second string.

StrCmpI Example

if (strcmpi("HeLLo", "hEllO"))
 prints("This will always be printed");

StrLen Function
Example

StrLen(str s);
The strlen function determines the number of characters in a string.    Since strings are terminated with a 0
(NULL) character, this function really counts the number of characters before a 0 is encountered.

Argument Description
str s The string to

determine the length
of.

Return Value
The length of characters in the string is
returned.

See also

StrMaxLen

StrLen Example

str teststr[] = "This is a test string";
printsc("The length of 'teststr' is ");
printn(strlen(teststr));

StrLower Function
StrLower(str s);
The strlower function converts all upper case characters in a string to lower case.    Characters other than
upper case are left unchanged.

Argument Description
str s The string to be

converted.

Return Value
The converted string is returned.

See also

StrUpper

StrMaxLen Function
StrMaxLen(str s);
The strmaxlen function determines the maximum number of characters that a string can hold.    This is the
same value as used when the string was defined elsewhere in the program (e.g. if the string was defined
as 'str hello[16];', a value of 16 would be returned).    All strings are really one character larger than
defined, as the last character is always a terminating 0 (NULL).    However, since this value can not be
changed, it is not counted as part of the length of a string.

Argument Description
str s The string to

determine the
maximum length of.

Return Value
The maximum number of characters
that can fit in the string, excluding the
terminating 0 (NULL).

See also

StrLen

StrPos Function
Example

StrPos(str string1, str substr, int start);
The strpos function is used to search for one string within another.

Argument Description
str string1 The string to be

searched.
str substr The string to search

for.
int start The position in the

string to begin
searching.

Return Value
If the substring is found, its location is
returned, otherwise a value of -1 is
returned.

See also

StrPosI

StrPos Example

str teststr[] = "Look outside, Cathy, it's raining cats and dogs.";
int i = 0, num = 0;
while (strpos(teststr, "cat", i) != -1) // loop until we don't find it.
 {
 ++num; // increment the counter.
 ++i; // increment i so we don't search from the old position,
 // which would put us in an infinite loop.
 }
printsc("'cat' was found ");
printn(num); // num should be 1 since it is case sensitive.
prints(" times.");

StrPosI Function
Example

StrPosI(str string1, str substr, int start);
The strposi function is used to search for one string within another, without regard to case.

Argument Description
str string1 The string to be

searched.
str substr The string to search

for.
int start The position in the

string to begin the
search.

Return Value
If the substring is found, its location is
returned, otherwise a value of -1 is
returned.

See also

StrPos

StrPosI Example

str teststr[] = "Look outside, Cathy, it's raining cats and dogs.";
int i = 0, num = 0;
while (strposi(teststr, "cat", i) != -1) // loop until we don't find it.
 {
 ++num; // increment the counter.
 ++i; // increment i so we don't search from the old position,
 // which would put us in an infinite loop.
 }
printsc("'cat' was found ");
printn(num); // num should be 2 since it is not case sensitive.
prints(" times.");

StrUpper Function
StrUpper(str s);
The strupper function converts all lower case characters in a string to upper case.    Characters other than
lower case are left unchanged.

Argument Description
str s The string to be

converted.

Return Value
The converted string is returned.

See also

StrLower

SubChr Function
Example

SubChr(str s, int pos);
The subchr function returns a character from a specified location of a string.

Argument Description
str s The string containing

the character.
int pos The position in the

string of the character.

Return Value
The integer value of the requested
character is returned.

See also

SetChr, SubChrs

SubChr Example

// This will print out the contents of a test string, extracting
// each character individually, and stopping when a 0 is reached
// which marks the end of all proper strings
int i;
str s[] = "This is a test string";
for (i = 0; subchr(s, i) != 0; ++i)
 printc(subchr(s, i));

SubChrs Function
SubChrs(str source, int pos, int count, str target);
The subchrs function copies a number of characters from one string into another and returns the target
string.    Only as many characters as will fit are copied.    This function is very similar to substr, except that
it is not string oriented, and does not stop copying characters when a 0 value is encountered.

Argument Description
str source The string to copy

from.
int pos The position in the

string to begin copying
from.

int count The number of
characters to copy
from the source string.

str target The string to copy into.

Return Value
The resulting target string is returned.

See also

SubStr, SubChr, CopyStr, CopyChrs

SubStr Function
Example

SubStr(str source, int pos, int max, str target);
The substr function copies a portion of one string to another and returns the resulting string.    Characters
are copied until a 0 (NULL) value is encountered (normally at the end of every string) or the maximum
number is reached. Only as many characters as will fit are copied.

Argument Description
str source The string to copy

from.
int pos The position in the

string to begin copying
from.

int max The maximum number
of characters to copy

str target The string to copy into.

Return Value
The resulting string is returned.

See also

SubChrs, CopyStr, CopyChrs

SubStr Example

str s[] = "horse cat dog", s2[16];
substr(s, 6, 3, s2);
if (s2 == "cat")
 prints("This will always be printed");

tDay Function
Example

tDay(int timeval);
The tday function returns an integer value representing the day portion of a date.

Argument Description
int timeval The date to retrieve

the day from.

Return Value
The day of the month, ranging from 1 to
31.

See also

CurTime, FileTime, tHour, tMin, tMonth, tSec, tYear

tDay Example

int t;
t = curtime();
printsc("This is day number ");
printn(tday(t));
printsc(" of month number ");
printn(tmonth(t));
printsc(" in the year ");
printn(tyear(t));
prints(".");

tHour Function
Example

tHour(int timeval);
The thour function returns an integer value representing the hour portion of a date.

Argument Description
int timeval The date to retrieve

the hour from.

Return Value
The hour of day, ranging from 0 to 23.

See also

CurTime, FileTime, tDay, tMin, tMonth, tSec, tYear

tHour Example

int t;
t = curtime();
printsc("The time is: ");
printn(thour(t));
printsc(":");
printn(tmin(t));
printsc(":");
printn(tsec(t));
prints("");

tMin Function
Example

tMin(int timeval);
The tmin function returns an integer value representing the minute portion of a date.

Argument Description
int timeval The date to retrieve

the minute from.

Return Value
The minute, ranging from 0 to 59.

See also

CurTime, FileTime, tDay, tHour, tMonth, tSec, tYear

tMin Example

int t;
t = curtime();
printsc("The time is: ");
printn(thour(t));
printsc(":");
printn(tmin(t));
printsc(":");
printn(tsec(t));
prints("");

tMonth Function
Example

tMonth(int timeval);
The tmonth function returns an integer value representing the month portion of a date.

Argument Description
int timeval The date to retrieve

the month from.

Return Value
The month of the year, ranging from 1
to 12.

See also

CurTime, FileTime, tDay, tHour, tMin, tSec, tYear

tMonth Example

int t;
t = curtime();
printsc("This is day number ");
printn(tday(t));
printsc(" of month number ");
printn(tmonth(t));
printsc(" in the year ");
printn(tyear(t));
prints(".");

tSec Function
Example

tSec(int timeval);
The tsec function returns an integer value representing the second portion of a date.

Argument Description
int timeval The date to retrieve

the second from.

Return Value
The second, ranging from 0 to 59.

See also

CurTime, FileTime, tDay, tHour, tMin, tMonth, tYear

tSec Example

int t;
t = curtime();
printsc("The time is: ");
printn(thour(t));
printsc(":");
printn(tmin(t));
printsc(":");
printn(tsec(t));
prints("");

tYear Function
Example

tYear(int timeval);
The tyear function returns an integer value representing the year portion of a date.

Argument Description
int timeval The date to retrieve

the year from.

Return Value
The year, ranging from 1970 to 2019.

See also

CurTime, FileTime, tDay, tHour, tMin, tMonth, tSec

tYear Example

int t;
t = curtime();
printsc("This is day number ");
printn(tday(t));
printsc(" of month number ");
printn(tmonth(t));
printsc(" in the year ");
printn(tyear(t));
prints(".");

TelixForWindows Function
TelixForWindows();
The telixforwindows function is used to determine if the version of the Telix script compiler is a Windows
version.    This function is useful if the scriptversion function returns 1 (TFW or compatible TFD), and you
need to determine explicitly if the environment is Windows.

Return Value
If a DOS version, a zero (FALSE) value
is returned.    If a Windows version, a
non-zero (TRUE) value is returned.

See also

ScriptVersion, TelixVersion

TelixVersion Function
TelixVersion();
The telixversion function is used to determine the version of Telix that is running.

Return Value
An integer value representing the
version is returned (i.e. 100 for version
1.00).

See also

ScriptVersion, TelixForWindows

Terminal Function
Example

Terminal(int SaveKeys, int TrackHits);
The terminal function allows Telix to process characters received from the connect device and print them
on the terminal screen, and process user keystrokes.    If a function has nothing to do (for example, while
waiting for a track hit), it can call terminal to make sure characters and user keystrokes are processed.   
Note that if a script wants to process every incoming character (e.g., with the cgetc function) the terminal
function should never be called.

Argument Description
int SaveKeys If zero (FALSE), Telix

will perform the default
keyboard processing.   
If non-zero (TRUE),
keystrokes will be
stored until the script
processes them.

int pos If zero (FALSE), comm
port processing will
stop if a track    hit
occurs.    If non-zero
(TRUE), track hits will
be ignored.

Return Value
A zero is always returned.

Terminal Example

// This will wait forever for either of two strings
// to come in from the comm port, and then stop.
int t1, t2, stat;
t1 = track("hello", 0);
t2 = track("good-bye", 0);
while (1) // loop forever
 {
 terminal(); // The call to terminal() lets any characters
 // that come in be looked at by Telix's
 // internal routines for a match with.
 // Incoming chars are also printed on the
 // terminal screen and user keystrokes are
 // handled
 stat = track_hit(0);
 if (stat == t1 || stat == t2) // exit if one of the strings
 break; // came in
 }
track_free(t1); // stop Telix for looking for more matches
track_free(t2);

Time Function
Example

Time(int timeval, str buffer);
The time function converts a Telix date value into a string formatted according to the Windows settings.   
Time values in this format are returned by the curtime and filetime functions, among others.

Argument Description
int timeval The date value to

convert.
str buffer The string to copy the

formatted date into.

Return Value
A zero is always returned.

See also

Date, CurTime, FileTime

Time Example

str s[16];
printsc("The current time is ");
time(curtime(), s);
prints(s);

Time_Up Function
Example

Time_Up(int thandle);
The time_up function determines if a specified timer has expired.    The period of time after which a timer
will elapse is specified in the timer_start function.

Argument Description
int thandle The handle of the

timer to be checked as
returned by the
timer_start    function.

Return Value
A non-zero (TRUE) value if a specified
timer has elapsed, otherwise a 0
(FALSE) value is returned.

See also

Delay, Timer_Free, Timer_Restart, Timer_Start, Timer_Total

Time_Up Example

int t;
t = timer_start(100); // delay for 10 seconds
while (!time_up(t))
 ;
// start a timer and loop for 10 seconds, printing the elapsed time
// in tenths of seconds
timer_restart(t, 100);
while (!time_up(t))
 {
 printn(timer_total(t));
 prints("");
 }
timer_free(t);

Timer_Free Function
Example

Timer_Free(int thandle);
The timer_free function frees a timer variable when it is no longer needed.    As only 16 timers are
available to scripts, it is important that they be released when they are no longer needed.

Argument Description
int thandle The handle of the

timer to be freed as
returned by the
timer_start    function.

Return Value
A zero is always returned.

See also

Delay, Time_Up, Timer_Restart, Timer_Start, Timer_Total

Timer_Free Example

int t;
t = timer_start(100); // delay for 10 seconds
while (!time_up(t))
 ;
// start a timer and loop for 10 seconds, printing the elapsed time
// in tenths of seconds
timer_restart(t, 100);
while (!time_up(t))
 {
 printn(timer_total(t));
 prints("");
 }
timer_free(t);

Timer_Restart Function
Example

Timer_Start(int thandle, int time);
The timer_restart function performs the same function as timer_start, except that it restarts an existing
timer.

Argument Description
int thandle The handle of the

timer to be restarted
as returned by the
timer_start    function.

int time The time in tenths of
seconds before the
timer expires.

Return Value
The timer handle is returned if
successful, otherwise a 0 is returned.

See also

Delay, Time_Up, Timer_Free, Timer_Start, Timer_Total

Timer_Restart Example

int t;
t = timer_start(100); // delay for 10 seconds
while (!time_up(t))
 ;
// start a timer and loop for 10 seconds, printing the elapsed time
// in tenths of seconds
timer_restart(t, 100);
while (!time_up(t))
 {
 printn(timer_total(t));
 prints("");
 }
timer_free(t);

Timer_Start Function
Example

Timer_Start(int time);
The timer_start function is used to start a timer.    This timer can then be used to check if a certain period
of time has elapsed from when the timer was started.

Argument Description
int time The time in tenths of

seconds before the
timer expires.

Return Value
An integer value called a timer handle,
that is used to refer to this timer when
other timer functions are called.

See also

Delay, Time_Up, Timer_Free, Timer_Restart, Timer_Total

Timer_Start Example

int t;
t = timer_start(100); // delay for 10 seconds
while (!time_up(t))
 ;
// start a timer and loop for 10 seconds, printing the elapsed time
// in tenths of seconds
timer_restart(t, 100);
while (!time_up(t))
 {
 printn(timer_total(t));
 prints("");
 }
timer_free(t);

Timer_Total Function
Example

Timer_Total(int thandle);
The timer_total function determines the total elapsed time since a timer was started or restarted.

Argument Description
int thandle The handle of the

timer to be freed as
returned by the
timer_start    function.

Return Value
The elapsed time in tenths of a second.

See also

Delay, Time_Up, Timer_Free, Timer_Restart, Timer_Start

Timer_Total Example

int t;
t = timer_start(100); // delay for 10 seconds
while (!time_up(t))
 ;
// start a timer and loop for 10 seconds, printing the elapsed time
// in tenths of seconds
timer_restart(t, 100);
while (!time_up(t))
 {
 printn(timer_total(t));
 prints("");
 }
timer_free(t);

ToLower Function
ToLower(int chr);
The tolower function converts a character to its lower case equivalent.

Argument Description
int chr The upper case

character to be
converted.

Return Value
The integer value of the converted
character.

See also

ToUpper, StrLower , StrUpper

Tone Function
Example

Tone(int frequency, int length);
The tone function causes the PC to emit a sound of a specified frequency for a period of time.

Argument Description
int frequency The frequency of the

tone to generate.
int length The length of time in

tenths of seconds to
generate the tone.

Return Value
A zero is always returned.

See also

Alarm, PlayWave, _alarm_on, _sound_on

Tone Example

tone(659, 14);

ToUpper Function
ToUpper(int chr);
The toupper function converts a character to its upper case equivalent.

Argument Description
int chr The lower case

character to be
converted.

Return Value
The integer value of the converted
character.

See also

ToLower, StrLower , StrUpper

Track Function
Example

Track(str trackstr, int mode);
The track function tells Telix to keep track of (watch for) a string to be received from the connect device.   
Up to 32 tracks may be active at one time.

Argument Description
str trackstr The string to be

tracked.
int mode If 0, case is significant,

otherwise, it is not.   
Tracking strings where
case is significant is
faster, and should be
used when many
tracks are needed.

Return Value
An integer value called a track handle,
which is used to refer to the string in
other tracking functions.

See also

WaitFor, Track_AddChr, Track_Free, Track_Hit

Track Example

// Log-on to a BBS, answering two prompts in any order.
// This will loop forever, so for actual use would have
// to be changed a bit. See sample scripts for examples.
int stat, t1, t2;
t1 = track("Name? ", 0);
t2 = track("Password? ", 0);
while (1) // loop as long as needed
 {
 terminal(); // call terminal function to allow Telix
 // to look at incoming characters for
 // matches and let Telix process user
 // keystrokes
 stat = track_hit(0); // see if any matches
 if (stat == t1) // name prompt
 cputs("Joe Smith^M"); // send name and continue looping
 if (stat == t2) // password prompt
 cputs("mypass^M"); // send password
 }
track_free(t1); // free track handles
track_free(t2);

Track_AddChr Function
Example

Track_AddChr(int chr);
While a script is executing, Telix is not in terminal mode and does not have access to incoming characters
to scan for matching strings.    Therefore, the terminal function must periodically be called to allow Telix to
process incoming characters.    Alternately, if a script must process all incoming characters itself (with a
function like cgetc), and therefore can not call the terminal function, they must still be added to the track
routines for string matching to work.    The track_addchr function performs this process.    When it is
called, Telix processes the specified character as if it had been received from the terminal handler, and
uses it to scan for matching strings.

Note that all of the Print functions will call track_addchr automatically.

Argument Description
int chr The character to be

processed by Telix's
track handler.

Return Value
A zero is always returned.

See also

WaitFor, Track, Track_Free, Track_Hit

Track_AddChr Example

// Log-on to a BBS, answering two prompts in any order.
int stat, t1, t2, track1_hit = 0, track2_hit = 0;
t1 = track("Name? ", 0);
t2 = track("Password? ", 0);
while (1) // loop as long as needed
 {
 c = cgetc(); // use this instead of terminal() to
 track_addchr(c); // prevent terminal update
 stat = track_hit(0); // see if any matches
 if (stat == t1) // name prompt
 {
 cputs("Joe Smith^M"); // send name and continue looping
 if (track2_hit)
 break; // exit loop if password was sent
 track1_hit = 1; // set flag that name was sent
 }
 else if (stat == t2) // password prompt
 {
 cputs("mypass^M"); // send password
 if (track1_hit)
 break; // exit loop if name was sent
 track2_hit = 1; // set flag that password was sent
 }
 }
track_free(t1); // free track handles
track_free(t2);

Track_Free Function
Example

Track_Free(int handle);
The track_free function is used to tell Telix to stop tracking a certain string.    It is very important to free
strings when they no longer need to be tracked, as tracking a large number of strings can slow down
Telix's execution.

Argument Description
int handle The track handle that

was returned when the
string was added with
the track function.    If
zero, all tracked
strings are released.

Return Value
A zero is always returned.

See also

WaitFor, Track, Track_AddChr, Track_Hit

Track_Free Example

// Log-on to a BBS, answering two prompts in any order.
// This will loop forever, so for actual use would have
// to be changed a bit. See sample scripts for examples.
int stat, t1, t2;
t1 = track("Name? ", 0);
t2 = track("Password? ", 0);
while (1) // loop as long as needed
 {
 terminal(); // call terminal function to allow Telix
 // to look at incoming characters for
 // matches and let Telix process user
 // keystrokes
 stat = track_hit(0); // see if any matches
 if (stat == t1) // name prompt
 cputs("Joe Smith^M"); // send name and continue looping
 if (stat == t2) // password prompt
 cputs("mypass^M"); // send password
 }
track_free(t1); // free track handles
track_free(t2);

Track_Hit Function
Example

Track_Hit(int handle);
When track is called, Telix doesn't loop endlessly waiting for the string to come in, but instead returns
control back to the script.    As characters are received, Telix checks to see if any of the strings to be
tracked have been matched, and marks those that have.    A script can at any time call the track_hit
function to see if a string was received.    The marker on a handle is cleared once track_hit has indicated
that the string was received.

Argument Description
int handle The track handle that

was returned when the
string was added with
the track function.    If
zero, the lowest
numbered handle of
any string that has be
matched is returned,
or zero if none have.

Return Value
If the string was received, a non-zero
(TRUE) value is returned.    If it hasn't
been received, a zero (FALSE) value is
returned.

See also

WaitFor, Track, Track_AddChr, Track_Free

Track_Hit Example

// Log-on to a BBS, answering two prompts in any order.
// This will loop forever, so for actual use would have
// to be changed a bit. See sample scripts for examples.
int stat, t1, t2;
t1 = track("Name? ", 0);
t2 = track("Password? ", 0);
while (1) // loop as long as needed
 {
 terminal(); // call terminal function to allow Telix
 // to look at incoming characters for
 // matches and let Telix process user
 // keystrokes
 stat = track_hit(0); // see if any matches
 if (stat == t1) // name prompt
 cputs("Joe Smith^M"); // send name and continue looping
 if (stat == t2) // password prompt
 cputs("mypass^M"); // send password
 }
track_free(t1); // free track handles
track_free(t2);

TransTab Function
TransTab(str filename, int table);
The transtab function is used to load or clear the incoming or outgoing character translation table.

Argument Description
str filename If a filename

specifying a valid
translation table, it is
loaded into memory.   
If empty (""), Telix will
prompt for the table to
load.    If the string is
"*CLEAR*", the current
table is cleared.

int table A value of 0 indicates
the incoming
translation table.    A
value of 1 indicates
the outgoing
translation table.

Return Value
A value of -1 is returned if there is a
problem loading the indicated translate
table, otherwise a non-zero (TRUE)
value is returned.

Unload_Scr Function
Example

Unload_Scr(str filename);
The load_scr function can be used by a script file to load another script into memory before it is actually
used.    The unload_scr function should then be used to unload or remove this script from memory when it
is no longer needed.    Note that a script that is currently executing or that is nested (has called the current
script) must not be unloaded, since Telix is still executing it or will need to return to it eventually!

Argument Description
str filename The filename of the

script to be unloaded. 
If no extension is
given, .SLC is
assumed.

Return Value
If there is a problem unloading the script
file, a value of -1 is returned.   
Otherwise a non-zero (TRUE) value is
returned.

See also

Load_Scr, Is_Loaded

Unload_Scr Example

int stat;
stat = load_scr("TEST"); // load TEST.SLC
 ... // do other things
unload_scr("TEST"); // take TEST.SLC out of memory

Update_Term Function
Example

Update_Term();
The update_term function is called to ensure that Telix updates certain things relating to the video and
terminal page.    For example, changes made to the _back_color and _fore_color system variables    will
not take effect until this function is called.

Return Value
A zero is always returned.

Update_Term Example

int temp; // reverse current terminal colors
temp = back_color;
back_color = fore_color;
fore_color = temp;
update_term(); // Ensure that changes take effect.
clear_scr(); // Clear the screen to reset colors.

UsageLog Function
Example

UsageLog(str filename);
The usagelog function is used to manipulate the Telix usage log facility.

Argument Description
str filename If a valid filename, all

usage will be logged
to that file.    If empty
(""), Telix will prompt
for the filename to log
usage to.    If the string
is "*CLOSE*", the
usage log is closed,
and no further logging
will occur.

Return Value
A value of -1 is returned if there is a
problem performing the indicated
operation, otherwise a positive value is
returned.

See also

UStamp, Usage_Stat, _usage_fname

UsageLog Example

str oldlog[80];
int loginuse;
loginuse = usage_stat();
if (loginuse)
 {
 ustamp("Logging switched to SPECIAL.LOG.", 1, 1);
 oldlog = _usage_fname;
 usagelog("*CLOSE*");
 }
usagelog("SPECIAL.USE"); // Log all usage to the file SPECIAL.USE in the
current directory.
// do actions that need logging.
usagelog("*CLOSE*"); // Close the special log.
if (loginuse)
 usagelog(oldlog);

Usage_Stat Function
Example

Usage_Stat();
The usage_stat function returns an integer value representing the current status of the Usage Log.

Return Value
If the Usage Log is currently open, a
non-zero (TRUE) value is returned,
otherwise a value of zero (FALSE) is
returned.

Return Value
A zero is always returned.

See also

UsageLog, Capture_Stat

Usage_Stat Example

str oldlog[80];
int loginuse;
loginuse = usage_stat();
if (loginuse)
 {
 ustamp("Logging switched to SPECIAL.LOG.", 1, 1);
 oldlog = _usage_fname;
 usagelog("*CLOSE*");
 }
usagelog("SPECIAL.USE"); // Log all usage to the file SPECIAL.USE in the
current directory.
// do actions that need logging.
usagelog("*CLOSE*"); // Close the special log.
if (loginuse)
 usagelog(oldlog);

UStamp Function
Example

UStamp(str text, int new_entry, int add_nl);
The ustamp function is used to place (stamp) text into the Telix usage log.    If the usage log is not
currently open, this function call is simply ignored.

Argument Description
str text The entry to place in

the usage log.
int new_entry If non-zero (TRUE),

the current date and
time will preface the
entry.

int add_nl If non-zero (TRUE), a
carriage return and
line feed are added
after the entry.    Using
a value of zero
(FALSE), will allow
constructing single line
entries with multiple
calls to ustamp.

Return Value
A value of -1 is returned if there is a
problem writing to the usage log,
otherwise a non-zero (TRUE) value is
returned.

See also

UsageLog

UStamp Example

str oldlog[80];
int loginuse;
loginuse = usage_stat();
if (loginuse)
 {
 ustamp("Logging switched to SPECIAL.LOG.", 1, 1);
 oldlog = _usage_fname;
 usagelog("*CLOSE*");
 }
usagelog("SPECIAL.USE"); // Log all usage to the file SPECIAL.USE in the
current directory.
// do actions that need logging.
usagelog("*CLOSE*"); // Close the special log.
if (loginuse)
 usagelog(oldlog);

vGetChr Function
Example

vGetChr();
The vgetchr function is used to read a character, including color information, at the current cursor position
on the terminal screen.

Return Value
The return value contains the character
in the first (low) byte, and the color of
the character in the high (second) byte. 
Each component may be extracted
using the & and / operators (See the
Example).

See also

vGetChrs, vGetChrsA, vPutChr, vPutChrs, vPutChrsA

vGetChr Example

int chr;
chr = vgetchr(); // Get char and color at current cursor position
printsc("The character was ");
printc(chr & 255); // get character by masking out color byte
printsc(" with a color value of ");
printn(chr / 256); // shift color byte

vGetChrs Function
Example

vGetChrs(int x, int y, str buf, int pos, int num);
The vgetchrs function is used to read multiple characters from a position on the terminal screen into a
string, saving only the characters and disregarding colors.

Argument Description
int x The column on the

screen to begin
reading characters.

int y The line on the screen
to begin reading
characters.

str buf The variable to store
the characters in.   
Note that a 0 (NULL)
character is not
placed at the end of
the string.

int pos The position in the
variable to begin
storing characters.

int num The number of
character to read from
the screen.

Return Value
A -1 is returned if the function fails,
otherwise a zero is returned.

See also

vGetChr, vGetChrsA, vPutChr, vPutChrs, vPutChrsA

vGetChrs Example

// copy 20 characters starting from 10,10 on the screen to 20,20
// Don't keep color attributes
str buffer[20];
vgetchrs(10, 10, buffer, 0, 20);
vputchrs(20, 20, buffer, 0, 20);

vGetChrsA Function
Example

vGetChrsA(int x, int y, str buf, int pos, int num);
The vgetchrsa function is used to read multiple characters and their color attributes from a position on the
terminal screen into a string.    Note that to save both characters and colors, two bytes (characters) are
required for each.    Note also that this function does not put a 0 (NULL, or end of string character) at the
end of the sequence of characters retrieved.

Argument Description
int x The column on the

screen to begin
reading characters.

int y The line on the screen
to begin reading
characters.

str buf The variable to store
the characters in.   
Note that a 0 (NULL)
character is not
placed at the end of
the string.

int pos The position in the
variable to begin
storing characters.

int num The number of
characters to read
from the screen.

Return Value
A -1 is returned if the function fails,
otherwise a zero is returned.

See also

vGetChr, vGetChrs, vPutChr, vPutChrs, vPutChrsA

vGetChrsA Example

// copy a 20 by 10 grid of characters with a left hand corner of
// 10,5 to 40,7, and keep color attributes
str buffer[400]; // 20 wide * 10 tall * 2 bytes per character
int y;
for (y = 5; y < 15; y = y+1) // read chars in a loop
 vgetchrsa(10, y, buffer, 2 * 20 * (y - 5), 20);
for (y = 7; y < 17; y = y+1) // now write them in a loop
 vputchrsa(10, y, buffer, 2 * 20 * (y - 7), 20);

vPutChr Function
Example

vPutChr(int chr);
The vputchr function is used to place a character on the terminal screen at the current cursor position,
including color information.

Argument Description
int chr The character and it's

color attribute to place
on the screen.    The
low (first) byte
contains the character,
and the high (second)
byte contains the color
attribute.

Return Value
A -1 is returned if the function fails,
otherwise a zero is returned.

See also

vGetChr, vGetChrs, vGetChrsA, vPutChrs, vPutChrsA

vPutChr Example

// Place an inverse 'X' in the left top corner of the screen
gotoxy(0, 0);
vputchr('X' + 112 * 256); // 'X' is the character, 112 is the color value
 // of black on white, and it must be multiplied
 // by 256 to "shift" it into the high byte.

vPutChrs Function
Example

vPutChrs(int x, int y, str buf, int pos, int num, int attr);
The vputchrs function is used to write multiple characters from a string onto the terminal screen at a given
position with a specified color attribute.

Argument Description
int x The column on the

screen to begin writing
characters.

int y The line on the screen
to begin writing
characters.

str buf The variable to read   
the characters from.   
Note that vputchrs
assumes that color
values are not
included.

int pos The position in the
variable to begin
reading characters.

int num The number of
characters to read
from the string.

int attr The color attribute    to
use when writing the
characters to the
screen.

Return Value
A -1 is returned if the function fails,
otherwise a zero is returned.

See also

vGetChr, vGetChrs, vGetChrsA, vPutChr, vPutChrsA

vPutChrs Example

// copy 20 characters starting from 10,10 on the screen to 20,20
// Don't keep color attributes
str buffer[20];
vgetchrs(10, 10, buffer, 0, 20);
vputchrs(20, 20, buffer, 0, 20);

vPutChrsA Function
Example

vPutChrsA(int x, int y, str buf, int pos, int num);
The vputchrsa function is used to write multiple characters from a string onto the terminal screen at a
given position.

Argument Description
int x The column on the

screen to begin writing
characters.

int y The line on the screen
to begin writing
characters.

str buf The variable to read   
the characters from.   
Note that vputchrsa
assumes that color
attributes are included.

int pos The position in the
variable to begin
reading characters.

int num The number of
characters to read
from the string.

Return Value
A zero is always returned.

See also

vGetChr, vGetChrs, vGetChrsA, vPutChr, vPutChrs

vPutChrsA Example

// copy a 20 by 10 grid of characters with a left hand corner of
// 10,5 to 40,7, and keep color attributes
str buffer[400]; // 20 wide * 10 tall * 2 bytes per character
int y;
for (y = 5; y < 15; y = y+1) // read chars in a loop
 vgetchrsa(10, y, buffer, 2 * 20 * (y - 5), 20);
for (y = 7; y < 17; y = y+1) // now write them in a loop
 vputchrsa(10, y, buffer, 2 * 20 * (y - 7), 20);

vRstrArea Function
Example

vRstrArea(int vhandle);
The vrstrarea function is used to restore a previously saved portion of the terminal screen.

Argument Description
int vhandle The handle to the

saved screen
information returned
by a call to the
vsavearea function.

Return Value
A zero is always returned.

See also

vSaveArea

vRstrArea Example

int vhandle;
// save the current screen
vhandle = vsavearea(0, 0, gettermwidth()-1, gettermheight()-1);
myfunc(); // call a function
 // which modifies screen
vrstrarea(vhandle); // restore previous screen

vSaveArea Function
Example

vSaveArea(int x1, int y1, int x2, int y2);
The vsavearea function is used to save a rectangular portion of the terminal screen to be later restored.   
Characters, and their color attributes, are saved in an internal buffer.

It is very important that for every call to this function, there is a subsequent call to vrstrarea.    If this is not
done, the internal buffer used to store the screen area will not be released and can result in a memory
shortage.

Argument Description
int x1 The left column of the

area to be saved.
int y1 The top line of the

area to be saved.
int x2 The right column of

the area to be saved.
int y2 The bottom line of the

area to be saved.

Return Value
An integer value, commonly called a
handle is returned.    This handle is used
to refer to the saved area in subsequent
calls to vrstrarea which will restore the
screen area.    If Telix encounters a
problem trying to save the screen, a
value of -1 is returned.

See also

vRstrArea

vSaveArea Example

int vhandle;
vhandle = vsavearea(0, 0, 79, 24); // save the current screen
myfunc(); // call a function
 // which modifies screen
vrstrarea(vhandle); // restore previous screen

WaitFor Function
Example

WaitFor(str waitstr1 [... , str waitstr8], int timeout);
The waitfor function is used to wait for given strings to come to be received from the connect device.

Argument Description
str waitstrN A string to wait for.   

Case is not
significant, and the
string must not be
longer than 40
characters.

str waitstrn Up to 8 strings may be
monitored in one call
to waitfor.

int timeout The maximum amount
of time to wait for a
string to be matched.

Return Value
The index of the matched string will be
returned, or a zero (FALSE) value if no
strings were matched in the given
amount of time.

See also

Track, Track_AddChr, Track_Free, Track_Hit

WaitFor Example

int i;
i = (waitfor("name?", "password", 180));
if i
 {
 if (i == 1)
 prints("The string 'name?' came in from the comm port.");
 else
 prints("The string 'password' came in from the comm port.");
 }
else
 {
 prints("Neither 'name?' nor 'password' came in from the");
 prints("comm port in 3 minutes!");
 }

System Variables
Telix for Windows has quite a large number of predefined variables.    They are called System

Variables and are used to store many user preferences.    There are both string and numeric system
variables, and you can access them just as you would any other variable.    To help distinguish them from
normal variables, they all start with an underscore (_) character.    See the Quick List for a complete
alphabetical list of all system variables.

Variable Quick List
_add_lf _auto_ans_str _entry_bbstype _no_connect3
_alarm_on _back_color _entry_comment _no_connect4
_answerback_str _capture_fname _entry_enum _redial_stop
_asc_rcrtrans _cisb_auto _entry_name _scr_chk_key
_asc_remabort _connect_str _entry_num _script_dir
_asc_rlftrans _dest_bs _entry_logonname _sound_on
_asc_scpacing _dial_pause _entry_pass _strip_high
_asc_scrtrans _dial_time _fore_color _swap_bs
_asc_secho _dialpost _image_file _telix_dir
_asc_sexpand _dialpref1 _local_echo _up_dir
_asc_slftrans _dialpref2 _mdm_hang_str _usage_fname
_asc_slpacing _dialpref3 _mdm_init_str _zmod_auto
_asc_spacechr _dialpref4 _no_connect1 _zmod_rcrash
_asc_striph _down_dir _no_connect2 _zmod_scrash

_add_lf Variable
If the _add_lf system variable is set to non-zero (TRUE), a Line Feed character is automatically

added after every Carriage Return character that comes in.

_alarm_on Variable
If the _alarm_on system variable is set to non-zero (TRUE), alarms are enabled in Telix. Note that

if the _sound_off system variable is set to zero (FALSE), alarms will not be heard no matter what the state
of this variable.

See also

alarm, _sound_on

_answerback_str Variable
The _answerback_str system variable holds the string which Telix will send when a Ctrl-E (ENQ)

character is received while in terminal mode. If this string is empty, nothing is sent. Note that if
Compuserve B transfers are enabled, the answerback string will not be sent, since CIS B uses the Ctrl-E
as part of the transfer process. Maximum length is 19 characters.

_asc_rcrtrans - _asc_striph Variables
_asc_rcrtrans determines what Telix does with Carriage Return characters during ASCII receives.

0 do nothing
1 strip
2 add Line afterwards

_asc_remabort is the character which when received from the remote side during an ASCII transfer is a
signal to abort the transfer.

_asc_rlftrans determines what Telix does with Line Feed characters during ASCII receives.
0 do nothing
1 strip
2 add Carriage Return before

_asc_scpacing is the time in milliseconds which Telix should wait before transmitting each character
during ASCII sends.

_asc_scrtrans determines what Telix does with Carriage Return characters during ASCII sends.
0 do nothing
1 strip
2 add Line Feed afterwards.

If _asc_secho is set to non-zero (TRUE), Telix will echo each character during ASCII sends.

If _asc_sexpand is set to non-zero (TRUE), Telix will expand blank lines to a space character, during
ASCII sends.

_asc_slftrans determines what Telix does with Line Feed characters during ASCII sends.
0 do nothing
1 strip
2 add Carriage Return before

_asc_slpacing is the time in tenths of seconds which Telix should wait before transmitting each line during
ASCII sends.

_asc_spacechr is the character which Telix should wait for during ASCII sends, before transmitting each
line (0 means no wait).

If _asc_striph is set to non-zero (TRUE), Telix will strip the high (most significant) bit of each character in
an ASCII transfer.

_auto_ans_str Variable
The _auto_ans_str system variable holds the string that should be sent to the modem to make it

automatically answer the phone when it rings. This string is used by the Host Mode script, among others.
The string will possibly include translation characters as described in the Telix manual in the section by
that name, and should be sent to the modem with the cputs_tr function. Maximum length is 49 characters.

See also

_mdm_init_str

_back_color Variable
The _back_color system variable contains the background color which should be used for text in

terminal mode. Allowable values are from 0 - 15. Note that changes to this variable may not be reflected
until the screen is cleared.

See also

_fore_color

_capture_fname Variable
The _capture_fname system variable holds the default capture file filename. The maximum length

is 64 characters.

See also

capture, _usage_fname

_cisb_auto Variable
This variable is not yet supported in Telix for Windows, but will be added soon.

See also

_zmod_auto

_connect_str Variable
The _connect_str system variable holds the string which Telix should scan for when dialing, and

should take to mean that a connection has been established. For Hayes type modems it is usually set to
"CONNECT". Maximum length is 19 characters.

See also

_no_connect1 - _no_connect4

_dest_bs Variable
The _dest_bs system variable controls whether a backspace character received by Telix in

Terminal Mode erases the character to the left of the cursor, or just moves the cursor on top of it without
erasing it.    If this variable is 0 (FALSE), Telix will treat the backspace as non-destructive, and destructive
otherwise.

See also

_swap_bs

_dial_pause Variable
The _dial_pause system variable holds (in seconds) the amount of time to wait between the end

of one dialing attempt and the beginning of another. Most modems don't need more than a 1 second
pause.

_dial_time Variable
The _dial_time system variable holds the amount of time Telix should wait for a connection when

dialing, in seconds (e.g. 30).

See also

_dial_pause

_dialpost Variable
The _dialpost system variable holds the string (the dialing suffix) which should be sent to the

modem after the number, when dialing. For Hayes type modems, it is usually just a Carriage Return.
Maximum length is 19 characters. This string will possibly include some translation characters, as
described in the Telix manual, and should be sent to the modem with the cputs_tr function.

See also

_dialpref - _dialpref3, _redial_stop

_dialpref Variables
The _dialpref system variable holds the string which should be sent to the modem before the

number, when dialing. For Hayes type modems, it is usually set to "ATDT". Maximum length is 19
characters. This string will possibly include translation characters, as described in the Telix manual, and
should be sent to the modem with the cputs_tr function.

The _dialpref2, _dialpref3 and _dialpref4 variables are the other two dialing prefixes that may be
defined in Telix.

See also

_dialpost, _redial_stop

_down_dir Variable
The _down_dir system variable holds the default download directory name. When a file is

downloaded (received), if the user specifies a drive and/or directory in the name, the file is put there.
However, if only a name is specified, the file is placed in the directory indicated by _down_dir. The
maximum length is 64 characters, and this string should end with the backslash character, '\'.

See also

_up_dir, receive

_entry_enum Variable
The _entry_enum variable is set by the dialing routines. When a connection is established while

dialing, the entry number of the dialing directory entry connected to is stored here. If a manual number is
connected to, the value 0 is stored here.

See also

_entry_name, dial, redial

_entry_bbstype - _entry_pass Variables
All of the _entry_xxxx variables are set by the dialing routines.    When a connection has been

established, the appropriate value is copied into the variable.

The _entry_bbstype system variable contains the name of the BBS software package that is
connected to.    This variable is assigned in the dialing directory entry by the user.    Telix does not
determine this upon connection to a system.    The maximum length is 15 characters.

The _entry_comment system variable holds the value of the comment field from the entry
connected to.    Common uses are for storing mail packet filenames or secondary passwords.    The
maximum length is 40 characters.

The _entry_name system variable contains the name of the dialing directory entry connected to.   
The maximum length is 29 characters.

The _entry_num system variable holds the phone number of the entry connected to.    The
maximum length is 17 characters.

The _entry_logonname variable contains the user name for the entry connected to.    This is
useful for performing logons. The maximum is 25 characters.

The _entry_pass system variable holds the password from the entry connected to.    This is useful
for performing logons.    The maximum length is 14 characters.

See also

_entry_enum, dial, redial

_fore_color Variable
The _fore_color system variable contains the foreground color which should be used for text in

terminal mode.    Allowable values are from 0 - 15.    Note that changes to this variable may not be
reflected until the screen is cleared, or the update_term function is called.

See also

_back_color, Update_Term

_image_file Variable
The _image_file system variable holds the full name of the file that screen images are saved to

when the user selects Screen Image from the File menu or presses Alt-I while in terminal mode.    If this
file already exists, the screen is appended to it.

_local_echo Variable
The _local_echo system variable controls whether or not characters typed in terminal mode are

echoed on the screen.    If _local_echo is set to non-zero (TRUE), characters are echoed, otherwise they
are not.

_mdm_hang_str Variable
The _mdm_hang_str system variable holds the string that should be sent to the modem to hang it

up when the user presses Alt-H.    Note that this string will only be sent to the modem if Telix can't first
hang-up the modem by turning off a signal on the serial port called the DTR line.    This string may contain
translation characters as defined in the Telix manual, and should be sent to the modem with the cputs_tr
function. Maximum length is 19 characters.

See also

_mdm_init_str, _auto_ans_str

_mdm_init_str Variable
The _mdm_init system variable holds the string that should be sent to the modem when Telix is

started.    It is used to make sure certain settings in the modem are right.    This string may contain
translation characters as defined in the Telix manual, and should be sent to the modem with the cputs_tr
function. Maximum length is 49 characters.

See also

_auto_ans_str, _mdm_hang_str

_no_connect1 - _no_connect4 Variables
These system variables contain the strings that Telix should scan for when dialing that indicate a

connection could not be established (i.e., the number was busy or there was no answer).    The maximum
length for each string is 19 characters.

See also

_connect_str

_redial_stop Variable
The _redial_stop system variable holds the string that should be sent to the modem to stop a

dialing attempt. It usually just holds a Carriage Return character. This string may contain translation
characters as described in the Telix manual, and should be sent to the modem with the cputs_tr function.
Maximum length is 19 characters.

See also

_dialpref, _dialpost

_scr_chk_key Variable
If the _scr_chk_key variable is set to zero (FALSE), Telix will not allow executing scripts to be

aborted.    If set to non-zero (TRUE), users will be allowed to abort scripts.

_script_dir Variable
The _script_dir system variable holds the full path of the directory where Telix should look for

compiled script files when a script is selected to be run.    When a script is selected to be run, Telix uses
this procedure: if the name includes the drive and/or directory, only that path is searched. If the name
includes only the filename, the current directory is first searched for the script file, and then the directory
pointed to by the _script_dir variable.    This string should end in the backslash (\) character.    The
maximum allowed length is 64 characters.

See also

_telix_dir, _up_dir, _down_dir

_sound_on Variable
If the _sound_on system variable is set to non-zero (TRUE) sound is enabled in Telix, otherwise

all sound is shut off.

See also

alarm, _alarm_on

_strip_high Variable
The _strip_high system variable controls what Telix does with the high (most significant) bit of

incoming characters while in terminal mode.    If this variable is set to a non-zero (TRUE) value, Telix will
strip the high bit of incoming characters.

_swap_bs Variable
The _swap_bs system variable controls what Telix sends when the Backspace key is pressed.    If

this variable is 0, Telix will send a Backspace character when Backspace is pressed, and a DEL character
when Ctrl-Backspace is pressed.    If this variable is set to 1, Telix will reverse these codes.

See also

_dest_bs

_telix_dir Variable
The _telix_dir system variable holds the full path to reach the Telix program's base directory (e.g.

'C:\TELIX\').    Changing this variable is not recommended, as if a wrong value is used, Telix will probably
not be able to find many needed files. The maximum length is 64 characters.

If this variable is changed, it is imperative that a backslash (\) character is found at the end.   
Telix builds paths to many files by appending certain names to this string.    If the backslash is missing, it
will cause many problems.

See also

_script_dir, _up_dir, _down_dir

_up_dir Variable
The _up_dir system variable holds the default upload directory name.    When a file is to be

uploaded (sent), if the user specifies a drive and/or directory in the name, the file is taken from there.   
However, if only a name is specified, the file is searched for in the directory indicated by _up_dir.    This
variable should end with a backslash (\) character.    The maximum length is 64 characters.

See also

_down_dir, send

_usage_fname Variable
The _usage_fname system variable holds the default Usage Log filename.    The maximum length

is 64 characters.

See also

_capture_fname, usagelog

_zmod_auto Variable
The _zmod_auto system variable controls whether or not Zmodem autodownloads are allowed.   

If Telix is in terminal mode and receives an auto download request Telix will ignore it if this variable is set
to a 0 (FALSE) value.    The download will then have to be initiated by the user.

See also

_cisb_auto

_zmod_rcrash Variable
The _zmod_rcrash system variable controls whether the Zmodem receive Crash Recovery

(resume) option is on.    If this variable is set to a non-zero (TRUE) value, Telix will try to resume aborted
transfers during a Zmodem download.

See also

_zmod_scrash

_zmod_scrash Variable
The _zmod_scrash system variable controls whether the Zmodem send Crash Recovery

(resume) option is on.    If this variable is set to a non-zero (TRUE) value, Telix will try to tell the other side
to resume aborted transfers during a Zmodem upload.

See also

_zmod_rcrash

ASCII Character Set
The ASCII character set consists if 128 characters, with each character having an ASCII value, in

the range of 0 to 127. The IBM PC uses the IBM Extended ASCII set, which adds a further 128 values, to
provide extra symbols. The following table lists the regular ASCII character set. The first column contains
the ASCII control characters, which can not normally be printed, and are given by name.

 Dec Hex Ctrl Name Dec Hex Chr Dec Hex Chr Dec Hex Chr
 0 00 ^@ NUL 32 20 64 40 @ 96 60 `
 1 01 ^A SOH 33 21 ! 65 41 A 97 61 a
 2 02 ^B STX 34 22 " 66 42 B 98 62 b
 3 03 ^C ETX 35 23 # 67 43 C 99 63 c
 4 04 ^D EOT 36 24 $ 68 44 D 100 64 d
 5 05 ^E ENQ 37 25 % 69 45 E 101 65 e
 6 06 ^F ACK 38 26 & 70 46 F 102 66 f
 7 07 ^G BEL 39 27 ' 71 47 G 103 67 g
 8 08 ^H BS 40 28 (72 48 H 104 68 h
 9 09 ^I HT 41 29) 73 49 I 105 69 i
 10 0a ^J LF 42 2a * 74 4a J 106 6a j
 11 0b ^K VT 43 2b + 75 4b K 107 6b k
 12 0c ^L FF 44 2c , 76 4c L 108 6c l
 13 0d ^M CR 45 2d - 77 4d M 109 6d m
 14 0e ^N SO 46 2e . 78 4e N 110 6e n
 15 0f ^O SI 47 2f / 79 4f O 111 6f o
 16 10 ^P DLE 48 30 0 80 50 P 112 70 p
 17 11 ^Q DC1 49 31 1 81 51 Q 113 71 q
 18 12 ^R DC2 50 32 2 82 52 R 114 72 r
 19 13 ^S DC3 51 33 3 83 53 S 115 73 s
 20 14 ^T DC4 52 34 4 84 54 T 116 74 t
 21 15 ^U NAK 53 35 5 85 55 U 117 75 u
 22 16 ^V SYN 54 36 6 86 56 V 118 76 v
 23 17 ^W ETB 55 37 7 87 57 W 119 77 w
 24 18 ^X CAN 56 38 8 88 58 X 120 78 x
 25 19 ^Y EM 57 39 9 89 59 Y 121 79 y
 26 1a ^Z SUB 58 3a : 90 5a Z 122 7a z
 27 1b ^[ESC 59 3b ; 91 5b [123 7b {
 28 1c ^\ FS 60 3c < 92 5c \ 124 7c |
 29 1d ^] GS 61 3d = 93 5d] 125 7d }
 30 1e ^^ RS 62 3e > 94 5e ^ 126 7e ~
 31 1f ^_ US 63 3f ? 95 5f _ 127 7f DEL

Extended Key Scan Codes
The following chart lists keyboard scan codes for special non-ASCII keys, as returned by inkey

and inkeyw, and used by the keyget, keyset, keyload, and keysave SALT functions. Normal keys which
are within the ASCII set are listed in the preceding topic, ASCII Character Set.

 Key Normal w / Ctrl w / Alt w / Shift
 Dec Hex Dec Hex Dec Hex Dec Hex

 F1 15104 3b00 24064 5e00 26624 6800 21504 5400
 F2 15360 3c00 24320 5f00 26880 6900 21760 5500
 F3 15616 3d00 24576 6000 27136 6a00 22016 5600
 F4 15872 3e00 24832 6100 27392 6b00 22272 5700
 F5 16128 3f00 25088 6200 27648 6c00 22528 5800
 F6 16384 4000 25344 6300 27904 6d00 22784 5900
 F7 16640 4100 25600 6400 28160 6e00 23040 5a00
 F8 16896 4200 25856 6500 28416 6f00 23296 5b00
 F9 17152 4300 26112 6600 28672 7000 23552 5c00
 F10 17408 4400 26368 6700 28928 7100 23808 5d00
 F11
 F12

 1 30720 7800
 2 30976 7900
 3 31232 7a00
 4 31488 7b00
 5 31744 7c00
 6 32000 7d00
 7 32256 7e00
 8 32512 7f00
 9 32768 8000
 0 33024 8100

 Up 18432 4800
 Down 20480 5000
 Left 19200 4b00 29440 7300
 Right 19712 4d00 29696 7400
 Home 18176 4700 30464 7700
 End 20224 4f00 29952 7500
 PgUp 18688 4900 33792 8400
 PgDn 20736 5100 30208 7600
 Ins 20992 5200
 Del 21248 5300

Color Values
Several SALT functions, such as pstra, use color attribute values.    A character on the text screen

has a foreground color, and a background color.    Possible colors are numbered as follows:

Color Integer Value
Black 00
Blue 01
Green 02
Cyan 03
Red 04
Magenta 05
Brown 06
Light Gray 07
Dark Gray 08
Light Blue 09
Light Green 10
Light Cyan 11
Light Red 12
Light
Magenta

13

Yellow 14
White 15

To obtain a color attribute value for a color combination, the formula is:

color attribute value = foreground color value + (16 * background color value)

Therefore, a Yellow character on a Blue background would have a color attribute value of 30 (14
+ (16 * 1)).

Note that only the first eight colors are valid background colors.    Using light colors for a
background yields it's corresponding dark color, and causes the foreground color to blink.

The following is a useful function to add to your toolbox to make calculating color attributes easier.

#CONST Black 00
#CONST Blue 01
#CONST Green 02
#CONST Cyan 03
#CONST Red 04
#CONST Magenta 05
#CONST Brown 06
#CONST Lt_Gray 07
#CONST Dk_Gray 08
#CONST Lt_Blue 09
#CONST Lt_Green 10
#CONST Lt_Cyan 11
#CONST Lt_Red 12
#CONST Lt_Magenta 13
#CONST Yellow 14
#CONST White 15
MakeColor(int Fore, int Back)
 {

 int color;
 color = Fore + (Back * 16);
 return color;
 }
Using the constants in conjunction with the MakeColor function, the color attributes are calculated for you,
and the resulting code is more easily understood.    Consider the following:

pstra("Print this string in yellow on blue", 30);
pstra("Print this string in yellow on blue", MakeColor(Yellow, Blue));

SIMPLE Language

The Telix SIMPLE Language

Telix for Windows has a built-in programming language called SALT (Script Application Language for
Telix).    SALT is extremely powerful, and much of that power is due to its semblance to the C
programming language.    Along with that power comes a degree of difficulty, however.    For those not
comfortable in a structured programming environment such as SALT, a second scripting language,
SIMPLE (Salt IMPLEmentation) is also provided.

Simple takes a loosely structured program resembling a stream of English sentences and transforms it
into SALT for you. No programming experience is necessary.    Its SIMPLE!

What Can Be Accomplished With SIMPLE?

SIMPLE scripts can be used to automate logins to bulletin boards, automate repetitive tasks such as mail
transfers, or can be programmed to watch for multiple strings, offering up the proper response to each no
matter the order in which they arrive.    SIMPLE offers you much of the power of SALT without the learning
curve.

Comparing SIMPLE to SALT

SALT's complexity allows it to do much more than SIMPLE can.    For example, the Host+ bulletin board
that comes with Telix was written primarily in SALT, but such a task would not be possible in SIMPLE.
SALT offers access to most screen-related functions in Telix; SIMPLE offers only a pair of commands to
place information on the screen.    SALT offers full color control; SIMPLE does not.    Other differences
make SALT the preferable language for complex scripts.

Creating SIMPLE Scripts

A SIMPLE script is basically a sequence of instructions for Telix to follow, using a loosely defined syntax.   
You may use any text editor to produce this script file, as long as its output is normal ASCII text (this
means that if you use your word processor, you must explicitly tell it to write out the file using ASCII format
and not to embed any special codes in the file).    You may give any name you wish to a SIMPLE script,
although we recommend that you always use the extension .SIM for clarity.    For example, a script to log
on to the Telix Support BBS might be called TELIX.SIM.    If you use the Script Editor that is built in to Telix
for Windows, you must give the file an extension of .SIM or the compiler will treat the file as a SALT
script.

Once you have written your script file and saved it to disk, it must be compiled.    Using the SALT Editor,
you need only to select the Compile command from the menu, or if using an external editor, select
Compile from the Telix for Windows Script menu.    The compiler then reads your 'source' script file, and
compiles it to a form which Telix can understand.    The compiled script can then be loaded more quickly
by Telix, and is also usually smaller.    The output file is written with the same name as the source file
except that the extension .SLC is used.

When the script compiler finds an error in your source file, it will abort the compile process and give you
the line number on which the error occurred, as well as the type of error.    If you are using the SALT
Editor, the cursor will be moved to the line that the error occurred on and the error message will be
displayed on the status bar.    The error should then be fixed and the source re-compiled.    This is
repeated until the compiler detects no more errors in your source file.    The compiled script can then be
executed in Telix using one or all of several methods; using the Execute menu item on the Script menu,
as a linked script in a dialing directory entry, or called from another script.

See also

SIMPLE Syntax, SIMPLE Structure, SIMPLE Functions, SIMPLE Program Control

SIMPLE Syntax
Case is not important in command, function, and variable names.    The only time case matters is inside a
string constant (e.g., "Hello" is not the same string as "hello").    Whitespace (such as the space, the tab,
the Carriage Return, or the Line Feed) is not important.    The script compiler does not care where you
place items, so that you may arrange the program as you see fit. For example,

If Online Then Send String25
Else Dial "11" MaxOf 23 RunScript
is equivalent to

If Online Then
 Send String25
Else
 Dial "11" MaxOf 23 RunScript
or even to

If
Online
Then
Send
String25
Else
Dial
"11"
MaxOf
23
RunScript
The only time whitespace matters is when it would split up key-words or function name, or in a string.   
For example, the key-word 'whenever' must not be split up if it is to be recognized.    The same applies to
other key-words or function names.    Also, there must be space between the letters of a command and
other letters.    For example, 'whenever' is not the same as 'wheneverabc'.    In the interest of clarity, it is
recommended that you try to make your script easy to understand, by indenting where appropriate, and
by using space effectively.    There is no reason, for example, to put more than one statement on a line,
even if it is perfectly legal.    Another poor example, as the last example above illustrates, is one where a
complete line is broken up for no good reason.    A good example of program style can be found by
looking at the sample SIMPLE scripts included with Telix.

SIMPLE Structure

Program Structure

A SIMPLE script has no set format beyond a few easy-to-follow rules.    These rules will be discussed as
the apply to the individual commands when necessary.    Otherwise, simply add commands to your script
to do whatever is necessary.

Variables

A SIMPLE script may use up to 255 string "variables", or groups of characters, that you can change as
you see fit.    You need not do anything special to use a string.    Just use the word "StringXX" wherever
you need the string, where XX is the number of the string.    All SIMPLE strings are exactly 80 characters
in length.    These will be referred to as StringXX variables throughout this documentation.    Examples of
StringXX use might be as follows:

To create string number 20, and make it contain the phone number of the Telix BBS, you might have a
line:

Assign String20, "1-919-481-9399"
Note that you do not have to use all 80 characters of a string. SIMPLE knows where to end a string if you
don't fill it up.

To create a string that contains today's date, you could simply use:

Date String15
If you need to use either the quote character itself in a string, or the carat symbol (the shifted-6), both of
which have special meaning in Telix, you must dereference them.    To dereference the character, precede
it with a carat.    Examples of this are:

Assign String1, "A quote, ^", needs a carat in front."
Assign String2, "A carat, ^^, is represented by two carats."
Integer variables are also available, referred to as IntegerXX variables, and conform to the same rules as
StringXX variables described above.    IntegerXX variables can contain values ranging from -
2,147,483,683 to 2,147,483,648.

System Variables

SIMPLE has four system variables which may be used as part of certain statements.    Their use will be
explained in greater detail as part of the commands that may access them.    These variables are:

BBSNumber: This variable will contain the dialing directory entry number after dialing and connecting to
a system.    It changes only when a connection is made.

TransferStatus: This variable is explained in detail under the If directive.

ReturnCode: This variable is explained in detail under the If directive.

BBSPassword: This variable contains your password for the system you last connected to, as read from
the dialing directory.    This variable makes it possible to write a script that doesn't have to
be recompiled every time you change your password.    The script can just use this
variable instead of a String variable.    All you need to do when changing your password is
to edit the dialing directory within Telix, and insert the new password.

SIMPLE Functions
Alarm Emulate Send
Assign End Shell
Begin EraseFile Show
CaptureLog ExitScript Sound
ChangeDir ExitTelix Time
ClearScreen Hangup Upload
Date Input UsageLog
Dial Message Wait
Dos Printer
Download RunScript

ADD
AddString
Cursor
DIV
MUL
RenameFile
SUB

ADD Function
Example

ADD integer1, integer2
The ADD function adds the value of integer2 to integer1.    Neither integer need be defined prior to an
ADD.    The first value must be an IntegerXX variable, and the second value may be either a variable or
literal value.    The comma between the two values is required.

See also

Assign, DIV, MUL, SUB

ADD Example

Assign Integer30, 50
ADD Integer30, 25
ADD Integer30, Integer30

AddString Function
Example

AddString string1, string2
The AddString function adds, or concatonates, the value of string2 to string1.    The string1 variable must
be a StringXX variable, and string2 may be a literal string in quotes or a StringXX variable.    The comma
between the two strings is required.

See also

Assign

AddString Example

Assign String1, "TELIX"
AddString String1, ".REP"

Alarm Function
Example

Alarm integer
The Alarm function plays the Alarm wave sound defined in the Sounds configuration integer times.

Alarm Example

Send "C:\TFW\UP\MYMAIL.REP" with ZMODEM
if TransferStatus = 0 then
 Begin
 Alarm 1
 Message "Mail packet was not uploaded!"
 end

Assign Function
Example

Assign string1, string2
Assign integer1, integer2

The Assign function assigns the value of string2 to string1, or the value of integer1 to integer2.    Neither
string, or integer, need be defined prior to an assign.    The first value must be a StringXX, or IntegerXX,
variable, and the second value may be either a variable or literal value.    The comma between the two
values is required.

See also

AddString, ADD, DIV, MUL, SUB

Assign Example

Assign String24, "Telix Support BBS"
Assign String40, String24
Assign Integer30, 500
Assign Integer35, Integer30

Begin Command
Example

Begin
The Begin command denotes the start of a group of code that belongs together.    It is typically used to
keep a group of code together in conjunction with If statements.    Every Begin command must have a
corresponding End command.    Begin and End commands may be nested within each other.    It is
strongly recommended that indentation be used to help keep track of the Begin and End pairs.

See also

End

Begin Example

if Online then
 Begin
 Assign String4, "TELIX.REP"
 Alarm 3
 End

CaptureLog Function
Example

CaptureLog string | OFF | ON | PAUSE | UNPAUSE
The CaptureLog function controls the status of the Telix Capture file, in much the same was as Alt-L does
from the keyboard in Telix.    You may turn on the capture log by passing a StringXX or constant string,
PAUSE, UNPAUSE, or turn OFF the capture file entirely.    Only one of these actions may be performed
per CaptureLog command.    CaptureLog ON opens the capture log with the filename specified in the Telix
Filenames and Paths configuration.

See also

UsageLog

CaptureLog Example

CaptureLog "TEMP.CAP"
CaptureLog Pause
CaptureLog Unpause
CaptureLog Off
CaptureLog On
CaptureLog Off
Assign String16, "TELIX.CAP"
CaptureLog String16
CaptureLog Off

ChangeDir Function
Example

ChangeDir string1
The ChangeDir function provides access to the DOS "CD" command.    You may change to any valid
directory with this command.    Invalid directories are simply ignored, and Telix will remain in the current
directory.    String1 may be either a StringXX variable or a literal string in quotes.

ChangeDir Example

Assign String64, "D:\TELIX\DOWN"
ChangeDir String64
ChangeDir "C:\TELIX"

ClearScreen Function
Example

ClearScreen
The ClearScreen function acts as if you had pressed Alt-C from within Telix.    It clears the terminal
window of all characters.    ClearScreen does not accept any parameters.

ClearScreen Example

ClearScreen

Cursor Function
Cursor ON/OFF
The Cursor function turns the blinking cursor in the terminal window on or off.

Date Function
Example

Date string
The Date function places the current date into string.    string must be a StringXX-type variable.

Date Example

Date String16
show "Today's date is "
show String16 ENTER

Dial Function
Example

Dial string1 [FROM string2] [MAXOF integer] [RUNSCRIPT]
The Dial function allows nearly complete access to the Telix dialing directory.    Telix can be told to dial
several entries, optionally from a specific dialing directory file, and can be told whether or not to run a
linked script.

Dial must be passed at least one parameter, a StringXX variable or string constant in quotes containing
numbers to dial.    This string may contain either a list of entries by number, or a manual number preceded
with a lowercase "m".

If you wish, you may tell Dial from which directory these numbers are to be read, with an optional FROM
directive.    From must be passed a StringXX or literal string constant in quotes, containing the name of
the directory to load.    If you use a FROM directive, the specified directory will be used throughout the rest
of the script, or until a FROM directive is encountered in another dial function.    To avoid confusion, it is
best to either always use FROM, or never use it.    If FROM is not used, the currently loaded    directory
shall be the source.

You may tell Telix to limit the number of dialing attempts to make by using an optional MAXOF directive.   
MAXOF must be followed by an integer, which specifies the number of attempts to make.    MAXOF must
come after FROM, if FROM is present.

You may tell Telix to execute the script linked to the dialing directory with the RUNSCRIPT directive.    The
default is not to execute such a script.    By placing the optional directive RUNSCRIPT at the end of the
Dial command, Telix will execute a linked script attached to the entry connected to, if there is one, and
return control to your SIMPLE script upon completion.

The Dial function places a return value into the system variable ReturnCode as follows:

If there was a connection, ReturnCode shall be the entry number in the dialing directory of the
system connected to, or 1 for a manual number.

If there was no connection established, a zero shall be placed into ReturnCode.

If the string passed to dial did not contain a string that could be interpreted as a valid list of
numbers to dial, -1 will be placed into ReturnCode.

The use of the ReturnCode is discussed in detail as part of the If statement.

Dial Example

Assign String24, "1 5 6"
Assign String64, "D:\TELIX\FON\LONGDIST.FON"
// The first example dials entries 1, 5, and 6 from LONGDIST.FON until it
// connects to one of them or the user presses escape.
Dial String24 From String64
// The second example dials the Telix Support BBS manually, up to 50 times.
Dial "m1-919-481-9399" MaxOf 50
// The third example dials entries 1, 5, and 6, after loading TELIX.FON. If a
// connection is made, any script linked to the entry will be executed.
Dial String24 From "TELIX.FON" RunScript

DIV Function
Example

DIV integer1, integer2
The DIV function divides the value of integer1 by integer2.    Neither integer need be defined prior to a
DIV.    The first value must be an IntegerXX variable, and the second value may be either a variable or
literal value.    The comma between the two values is required.

See also

Assign, ADD, MUL, SUB

DIV Example

Assign Integer30, 50
DIV Integer30, 2

Dos Function
Example

Dos string [PAUSE]
The Dos function allows you to shell to DOS to execute the program specified in string.    String may be a
StringXX variable or a literal string in quotes.    If you wish Telix to pause prior to returning, simply place
the optional directive PAUSE after the command to execute.

The Errorlevel that DOS returns after running the command is placed in the system variable ReturnCode. 
Use of the ReturnCode is discussed with the If statement.    Please see your DOS manual for more
information regarding the DOS Errorlevel.

Dos Example

Assign String64, "C:\WP51\WP.EXE"
Dos String64
Dos "D:\UTIL\QEDIT.EXE" Pause

Download Function
Example

Download string WITH protocol
The Download function acts just as if you had pressed Alt-PgDn and entered a protocol and filename.    It
will download the file (or files if a batch protocol is used) indicated by string.    String may be a StringXX
variable or a string constant in quotes.

The Download command uses the protocol specified by the WITH directive.    If no protocol is specified,
Telix will prompt for the protocol. Protocols allowed are:

XModem
1K-XModem
G-1K-XModem
YModem
YModem-G
ZModem

Remember that downloads usually need to be triggered on the remote site before you can receive the file.
You will usually need to Send a start command prior to using the Download command.

The success or failure of the transfer is reported in the special system variable TransferStatus that is
described in the If...Then...Else section.

Download Example

Assign String64, "D:\TELIX\DOWN\WORK\TELIX.QWK"
Send "D;Z" Enter
Send Enter
Download String64 with Zmodem
If TransferStatus = 0 Then
 Message "Download failed!"
Send "D;G" Enter
Send Enter
Download "C:\TELIX\DOWN\TLX320-1.ZIP" With Ymodem-G
If TransferStatus > 0 Then
 Message "Download succeeded."

Emulate Function
Example

Emulate terminal
The Emulate function tells Telix to change the terminal emulation it is using to that specified by terminal.   
Allowable emulations are:

TTY
VT52
VT100
VT102
VT220
ANSI X3.64
ANSI-BBS
AVATAR
RIPscrip 1.54

Emulate Example

Emulate VT102
Emulate ANSI-BBS

End Command
Example

End
The End command denotes the end of a group of code that belongs together.    It is typically used to keep
a group of code together in conjunction with If statements.    Every End command must have a preceding
Begin command.    Begin and End commands may be nested within each other.    It is strongly
recommended that indentation be used to help keep track of the Begin and End pairs.

End Example

if Online then
 Begin
 Send "U" Enter
 Upload "TELIX.REP" with Zmodem
 End

EraseFile Function
Example

EraseFile string
The EraseFile function deletes the file specified in string from the disk.    Be careful using this command
as deleted files are usually unrecoverable.    String may be a StringXX variable or a literal string in quotes.

See also

RenameFile

EraseFile Example

Assign String24, "D:\WINDOWS\TELIX.TTF"
EraseFile String24
EraseFile "C:\TELIX\QWIK\TELIX.QWK"

ExitScript Function
Example

ExitScript
The ExitScript function halts execution of the script.    Telix will not prompt for confirmation, but instead will
stop the script immediately.

ExitScript Example

Assign String64, "D:\TELIX\DOWN\WORK\TELIX.QWK"
Send "D;Z" Enter
Send Enter
Download String64 with Zmodem
if TransferStatus=0 then
 begin
 Alarm 1
 Message "Download failed! Exiting script."
 ExitScript
 end
// If download succeeded then upload replies.
Send "U;Z" ENTER
Send Enter
Upload "D:\TELIX\UP\TELIX.REP"

ExitTelix Function
Example

ExitTelix
The ExitTelix function halts execution of the script, and exits Telix completely.    It is exactly like pressing
Alt-X in terminal mode.

ExitTelix Example

ExitTelix

Hangup Function
Example

Hangup
The Hangup function disconnects you from any system you might be connected to at the time.    It is
exactly like pressing Alt-H from terminal mode.

Hangup Example

if OnLine then
 HangUp
Dial "1"

Input Function
Example

Input string, integer
The Input function gets up to integer characters from the keyboard and places them into string.    Integer is
any integer value from 1 to 80, and string must be a StringXX-type variable.

No prompting is made by SIMPLE.    If you wish to prompt the user for the data, you will want to display
the prompt yourself using the Show command.

Input Example

// An example of the Input routine below allows the user to input up to 40
// characters, placing them into String22.
Input String22, 40

Message Function
Example

Message string
The Message command places string into a centered box on the screen for exactly three seconds.    It is
very much like the prompts that Telix uses to request confirmations from you, but it allows you to
specify the message in the box.    String may be a StringXX variable or a literal string in quotes.

Message Example

Assign String64, "D:\TELIX\DOWN\WORK\TELIX.QWK"
Send "D;Z" Enter
Send Enter
Download String64 with Zmodem
if transferstatus = 0 then
 begin
 message "Failed to download mail packet!"
 exitscript
 end
else then
 message "Downloaded mail packet successfully."

MUL Function
Example

MUL integer1, integer2
The MUL function multiplies the value of integer1 by integer2.    Neither integer need be defined prior to
an MUL.    The first value must be an IntegerXX variable, and the second value may be either a variable
or literal value.    The comma between the two values is required.

See also

Assign, ADD, DIV, SUB

MUL Example

Assigne Integer30, 25
MUL Integer30, 2

Printer Function
Example

Printer ON | OFF
The Printer command toggles the printer log on and off, just as Ctrl-@ does in terminal mode.    You must
specify the state you wish the log to be in, ON or OFF.

Printer Example

Printer On
Printer Off

RenameFile Function
Example

RenameFile string1, string2
The RenameFile function renames the file specified in string1 to the filename specified in string2.    Either
string may be a StringXX variable or a literal string in quotes.

See also

EraseFile

RenameFile Example

Assign String24, "C:\TELIX\QWK\TELIX.QWK"
RenameFile String24, "C:\TELIX\QWK\TELIX.BAK"

RunScript Function
Example

RunScript string
The RunScript function loads the script specified in string and executes it.    When this new script
terminates, your script will continue from this position.    String may be either a StringXX variable or a
literal string in quotes.

RunScript places the value returned by the called script into the system variable ReturnCode.    All
SIMPLE scripts will return a zero. SALT scripts may return varying values.

RunScript Example

dial "1"
if ReturnCode > 0 then
 begin
 RunScript "LOGON.SLC"
 RunScript "GETMAIL.SLC"
 end
else then
 begin
 Alarm 1
 Message "Could not connect to system!"
 end

Send Function
Example

Send string [ENTER]
The Send function sends the data contained in string out the connect device, and also to the screen.    If
the keyword ENTER follows string then a carriage return will be sent as well.    String may be a StringXX
variable or a string constant in quotes.

Send Example

Assign String14, "Telix Support"
Send String14
Send "Chatting with Sysop" Enter

Shell Function
Example

Shell
The Shell function opens a DOS window and allows you to execute other programs manually. To return
to your script from DOS, simply type "exit" at the DOS prompt.

You must return to the directory you started in if things are expected to function properly.    If you "exit"
back to Telix while in another directory, the current directory that scripts use will be incorrect and files
might not be found where they should be.    Be careful using the Shell command.

Shell Example

Shell

Show Function
Example

Show string [ENTER]
The Show function places the data contained in string on the screen. If the keyword ENTER follows
string, then a carriage return will be displayed as well.    String may be a StringXX variable or a
string constant in quotes.

Show is very similar to Send, but the data is not sent over the connect device.    Be careful not to confuse
Show and Send.

Show Example

Assign String14, "Telix Support"
Show String14
Show "Chatting with Sysop" Enter

Sound Function
Example

Sound integer1, integer2
The Sound function causes a tone of frequency (pitch) integer1 to be played on the PC speaker for
integer2 hundredths of a second.    You may want to experiment with values for integer1 to determine
acceptable frequencies.    Script execution will not continue until the time has elapsed.

Sound Example

Sound 200, 30
Sound 500, 10

SUB Function
Example

SUB integer1, integer2
The SUB function subtracts the value of integer2 from integer1.    Neither integer need be defined prior to
an SUB.    The first value must be an IntegerXX variable, and the second value may be either a variable or
literal value.    The comma between the two values is required.

See also

Assign, ADD, DIV, MUL

SUB Example

<your text>

Time Function
Example

Time string
The Time function places the current time into string.    String must be a StringXX-type variable.

Time Example

Time String16
show "The time is "
show String16 ENTER

Upload Function
Example

Upload string WITH protocol
The Upload function acts just as if you had pressed Alt-PgUp and entered a protocol and filename.    It will
upload the file (or files if a batch protocol is used) indicated by string.    String may be a StringXX variable
or a string constant in quotes.

The Upload command uses the protocol specified on the command line by the WITH operator.    If a
protocol is not specified, Telix will prompt for the protocol.    Protocols allowed are:

XModem
1K-XModem
G-1K-XModem
YModem
YModem-G
ZModem

Remember that uploads usually need to be triggered on the remote site before you can send the file.   
You will usually need to Send a start command prior to using the Upload command.

The success or failure of the transfer is reported in the special system variable TransferStatus that is
described in the If...Then...Else section.

Upload Example

Assign String64, "D:\TELIX\DOWN\WORK\TELIX.REP"
Send "U;Z" Enter
Send Enter
Upload String64 with Zmodem
If TransferStatus = 0 Then
 Message "Download failed!"
Send "U;G" Enter
Send Enter
Upload "C:\TELIX\DOWN\TLX320-1.ZIP" With Ymodem-G
If TransferStatus > 0 Then
 Message "Download succeeded."

UsageLog Function
Example

UsageLog ON | OFF
The UsageLog command toggles the Telix usage log on and off.    You must specify the state you wish the
log to be in, ON or OFF.

UsageLog Example

UsageLog On
UsageLog Off

Wait Function
Example

Wait integer
The Wait function forces the script to pause for integer seconds.

Wait Example

Wait 60

SIMPLE Program Control
SIMPLE scripts would be less than useful if there wasn't a way to cause the lines to execute out of order
or in repetitive blocks. There are three commands that can cause a SIMPLE script to take on a much
higher degree of functionality, and thus complexity.    Starting with the easiest one, they are the WaitFor
command, If...Then...Else command, and the WhenEver loop.

See also

WaitFor, If...Then...Else, WhenEver

WaitFor Command
Example

WaitFor string1 [MAXOF integer] THEN string2
Often when automating logons to online systems, you must enter information in response to a certain
prompt, but it is not known exactly when that prompt will be ready for your input.    Waitfor simulates
exactly what you would do when logging onto a system.    It waits for the prompt to appear, and then does
what you tell it.

The prompt to wait for is given in string1, and it may be a literal string in quotes, or a StringXX variable.   
Case is not significant, and the string must be no more than 40 characters.

The optional MAXOF directive tells the WaitFor command how long to wait before giving up.    integer is
the maximum number of seconds to wait.    If MAXOF is defined, and integer seconds elapse without
string1 being received, SIMPLE skips the command given in string2 and continues with the next
command in the script.

string2 is any valid SIMPLE function, including blocks surrounded by Begin and End.

WaitFor Example

Clark Development's PCBoard BBS prompts the user for various inputs, always in the same order.    It will
prompt you for your color preference, your first name, your last name, and your password.    You can use
the WaitFor command in a short SIMPLE script to automate this process as follows:

Assign String1, "Jeff"
Assign String2, "Woods"
Assign String101, "first name"
Assign String102, "last name"
Waitfor "you want graphics" MaxOf 30 Then Send "Y Q" Enter
Waitfor String101 MaxOf 10 Then
 Send String1 Enter
Waitfor String102 MaxOf 10 Then Send String2 Enter
Waitfor "ssword" MaxOf 10 Then Send BBSPassword Enter

If...Then...Else Command
Example

If [NOT] condition THEN command [ELSE [IF] THEN command2] [ELSE
[IF] THEN...]
The If conditional is one of the most powerful, and thus complex functions of SIMPLE.    It has several
options and is relatively freeform, but it must follow certain conventions.    For this reason, following the
explanation of the If statement, our examples will become more complex, as we build on what has been
learned so far.

The general purpose of an If statement is to test to see if a certain condition is true, and to execute certain
commands if so, or optionally, certain commands if not.

Condition is the quality you wish to test for being true or false.    Conditions may be comparing strings for
equality, or inequality, to each other, checking for the existence of a certain file on the disk, or for checking
to see if a certain condition exists, such as if Telix is connected to a system.    You can check for the
opposite of any condition by preceding condition with the optional directive NOT.

The THEN keyword is required for all If statements, and must follow the condition.

Command is the action that could be performed based on the result of the condition.    The command may
be any SIMPLE function, and can even be a group of instructions marked by Begin and End.

The optional ELSE THEN directive tells SIMPLE to perform the actions specified in command2 if the
condition was not true.    The ELSE THEN directive will be discussed further below.

There are five predefined conditions that can be used:

ONLINE You may check the state of the carrier detect signal to determine if you are connected to
another system or not.    The format of the Online conditional is:
If [NOT] ONLINE [=YES] [=NO] THEN command
YES and NO are optional and are only included for clarity.    See the Online Examples for
more information.

EXIST You may check for the existence of a file on the disk prior to attempting an action on that
file.    The format of the Exist conditional is:
If [NOT] EXIST string THEN command
String may be a StringXX variable or a string constant in quotes.    See the Exist
Examples for more information.

BBSNUMBER You may check the value of this system variable to determine which dialing
directory entry number you last connected to.    The format of the BBSNumber conditional
is:
If [NOT] BBSNUMBER = integer THEN command
Integer is any integer number.    For example, if you know that the Telix Support BBS is
entry # 1 in the current dialing directory, and you wish to find out if we are currently online
with this particular system, you could check the BBSNumber variable for the value of 1.   
See the BBSNumber Example for more information.

RETURNCODE You may check the results of any of three other SIMPLE commands with the
ReturnCode system variable.    The three commands you can check for success are Dos,
Dial, and RunScript.    The format of the ReturnCode conditional is as follows:

If [NOT] RETURNCODE = integer THEN command
Integer is any integer number.    See the ReturnCode Example for more information.

TRANSFERSTATUS You may check the result of the Upload or Download commands with the
TransferStatus system variable.    The format of a TransferStatus conditional is as follows:
If [NOT] TRANSFERSTATUS = integer THEN command
Integer is any integer number.    See the TransferStatus Example for more information.

An optional ELSE THEN directive may be included with any IF statement to further control the flow of the
program.    ELSE THEN statements may be nested within one another, and infinitely deep.    See the
Example for more information.

If...Then...Else Examples

If Online Then
Begin
 Send "U;Z" Enter
 Upload "Telix.REP" with Zmodem
 If TransferStatus = 0 Then
 Download "Telix.QWK" with Xmodem
 Else If
 Upload "Telix.REP" With Zmodem
 Else
 Hangup
End
Else Then
 Dial "11"

Online Examples

If Online Then
Begin
 Download "TELIX.QWK" With ZModem
 EraseFile "TELIX.REP"
End
If Not Online Then
 Dial "m1-919-481-9399" MaxOf 50
If Online=No Then Dial "5"

Exist Examples

Assign String1, "D:\TELIX\QWK\TELIX.REP"
If Exist String1 Then
 Upload String1 With Zmodem
If Not Exist String1 Then
 If Online Then
 Begin
 Download String1 With Zmodem
 EraseFile "ANYFILE"
 End

BBSNumber Example

If Online Then
 If BBSNumber = 1 Then
 Begin
 EraseFile "TELIX.QWK"
 Download "TELIX.QWK" With Zmodem
 End
Note that the command executed for "If Online" encompasses all of the rest of the above example
through the End statement.    This is the reason for the indentation as above.    It reminds us which lines
comprise the command to execute if the condition is true.

ReturnCode Example

In the follow example, assume that you know that the program Foo.EXE returns a DOS Errorlevel of 1 if
today is a Saturday, and an Errorlevel of 0 for every other day of the week.    Given these conditions, you
could call the a BBS to download a mail packet on Saturdays only.    Note the RUNSCRIPT directive in the
Dial command;    we will assume that entry 1 has a linked script which will log us on to the board and
finish leaving us at the main prompt.

Dos "Foo.EXE"
If ReturnCode = 1 Then
Begin
 Dial "1" Maxof 50 RunScript
 Send "QMAIL4 D;Y"
 Download "TELIX.QWK" With Zmodem
 Hangup
End

TransferStatus Example

The following example will try to send a mail packet to the Telix BBS and, if not successful, will try again.   
The example assumes that we are already logged on and ready to upload.

Send "TELIX.REP" With Zmodem
If TransferStatus = 0 Then
 Send "TELIX.REP" With Zmodem

WhenEver Loop
Example

WHENLOOP
WHENEVER string THEN command
WHENEVER string THEN command
WHENEVER string THEN command
....

ENDWHEN
The Whenever loop is the most powerful, and thus most complex function of SIMPLE.    It has several
options and is relatively freeform, but it must follow certain conventions.

The purpose of a Whenever loop is best explained in terms of WaitFor.    Please be sure you understand
Waitfor before continuing here.

One of the inherent problems of WaitFor is that the order the prompts come in must be fixed.    One
particular bulletin board can randomly prompt your for your birthday as verification of who you really are.   
Such a prompt renders the WaitFor command fairly useless in such a situation.

Whenever is the answer to this problem.    You may set up a group of up to sixteen different strings and
can define the proper actions SIMPLE should take whenever that particular prompt comes in.    The order
of the prompts will not matter.    If a prompt is received, the defined action will occur.

A Whenever Loop always begins with the keyword WhenLoop.

Immediately following WhenLoop is a series of up to sixteen Whenever directives.    A whenever
directive defines the string to watch for and the actions to execute when it is received.    The keyword
THEN must appear between the two, exactly as above.

String may be a StringXX variable or a string constant in quotes.    Case is not significant, and string may
be no longer than 40 characters.

Whenever string is received, command will be executed.      The power of the Whenever loop lies in the
fact that absolutely any SIMPLE construct may be used here as the command, with the single exception
of another Whenever loop.    Waitfor, If, or any SIMPLE function may be used.

The keyword EndWhen must follow the last Whenever directive.

The keyword QuitWhen is used to exit from a given WhenLoop at any time.

WhenEver Loop Example

Using the example of a BBS which can randomly prompt for your date of birth during the login, the
following script will log on to that system, enter the mail door, download a mail packet, and log off.

WhenLoop
 Whenever "language t" Then Send "2" Enter
 Whenever "first name" Then Send "Jeff" Enter
 Whenever "last name" Then Send "Woods" Enter
 Whenever "ssword" Then Send BBSPassword Enter
 Whenever "birthday" Then Send "03/25/66" Enter
 Whenever "new mail" Then Send "N Q" Enter
 Whenever "rd Command" Then Send "MAILDOOR" Enter
 Whenever "mail Command" Then
 Begin
 Send "D;Y" Enter
 Waitfor "ready to Send Telix.QWK" MaxOf 300 Then
 Download "TELIX.QWK" With Zmodem
 If TransferStatus = 0 Then
 Begin
 Message "Download Not Successful!"
 Sound 200, 2
 End
 Else
 Begin
 Wait(20)
 Send "G;Y" Enter
 Hangup
 QuitWhen
 End
 End
EndWhen
The last Whenever directive specifies to the script that it is to do everything within the outermost
Begin/End.    Note that the final whenever is in response to a prompt that indicates we are in the mail door.
If we are in the mail door, we send a command to start the download of a mail packet.    When the packet
is ready, we actually attempt download.    Upon checking the result of the transfer, we either log off and
exit the WhenLoop (we did what we wanted), or we make a beep and go back to the whenloop, which will
trigger again on the mail Command prompt, and try to download again.

Study the example above carefully, as it is very typical of a complete SIMPLE script.    Be careful when
using WhenLoops as the above script can try over and over to download a packet.    If there is a problem
downloading due to the BBS, you could run up quite a bill.    Advanced automation scripts should be in
SALT, which allows greater control.

